Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Millennium Article
  • Published:

The search for complex disease genes: fault by linkage or fault by association?

Abstract

With the human DNA sequence nearing completion, the search for complex disease genes is gaining momentum, as is the debate over gene-finding strategies. This overview contrasts two pivotal methods: linkage analysis and association mapping. Linkage analysis has been used successfully to identify the genes underlying rare mendelian disorders. It has also played a role in attempts to map genes for common non-mendelian (also known as ‘complex’ or ‘multifactorial’) diseases such as psychiatric disorders. However, despite extensive efforts progress has been slow, marred by inconsistent or ambiguous results. Uncertainties about the utility of the linkage approach for complex genetic traits has spurred interest in association studies with candidate genes, as an alternate strategy. Recently, with the advent of new molecular tools, in particular high-density, single-nucleotide polymorphisms (SNPs) maps, it has been argued that, while linkage analysis may retain some role, genome-wide association studies with SNPs offer a superior strategy for unraveling genetic complexity. In this paper I review these issues, stressing the pros and cons of the various strategies. I propose that: (1) the uncertainties in association studies may have been underestimated; (2) neither method is sufficient or optimal; and (3) a joint linkage and association approach, together with genomic, statistical and computational advances, may have greater promise for understanding the genetic underpinnings of complex disorders in the new millennium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Risch N . Searching for genetic determinants in the new millennium Nature 2000 405: 847–856

    Article  CAS  PubMed  Google Scholar 

  2. Crowe RR . Candidate genes in psychiatry: an epidemiological perspective Am J Med Genet 1993 48: 74–77

    Article  CAS  PubMed  Google Scholar 

  3. Kidd KK . Association of disease with genetic markers: déjà vu all over again Am J Med Genet 1993 48: 71–72

    Article  CAS  PubMed  Google Scholar 

  4. Carey G . Genetic association study in psychiatry: analytical evaluation and a recommendation Am J Med Genet 1994 54: 311–317

    Article  CAS  PubMed  Google Scholar 

  5. Owen MJ, Holmans P, McGuffin P . Association studies in psychiatric genetics Mol Psychiatry 1997 2: 270–273

    Article  CAS  PubMed  Google Scholar 

  6. Paterson AD . Case-control association studies in complex traits_the end of an era? Mol Psychiatry 1997 2: 277–278

    Article  CAS  PubMed  Google Scholar 

  7. Baron M . Association studies in psychiatry: a season of discontent Mol Psychiatry 1997 2: 278–281

    Article  CAS  PubMed  Google Scholar 

  8. Baron M . Candidate genes and behavioral traits_candidly! Arch Gen Psychiatry 1999 56: 582–583

    Article  CAS  PubMed  Google Scholar 

  9. Wang DG, Fan J-B, Siao C-J, Berno A, Young P, Sapolsky R et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome Science 1998 280: 1077–1082

    Article  CAS  PubMed  Google Scholar 

  10. Risch N, Merikangas K . The future of genetic studies of complex human diseases Science 1996 273: 1516–1517

    Article  CAS  PubMed  Google Scholar 

  11. Collins FS, Guyer MS, Chakravarti A . Variations on a theme: cataloging human DNA sequence variation Science 1997 278: 1580–1581

    Article  CAS  PubMed  Google Scholar 

  12. Kruglyak L . Prospects for whole-genome linkage disequilibrium mapping of common disease genes Hum Genet 1998 22: 139–144

    Google Scholar 

  13. Barcellos LF, Klitz W, Field L, Tobias R, Bowcock AM, Wilson R et al. Association mapping of disease loci by use of a pooled DNA genomic screen Am J Hum Genet 1997 61: 734–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boehnke M . A look at linkage disequilibrium Nat Genet 2000 25: 246–247

    Article  CAS  PubMed  Google Scholar 

  15. Kruglyak L . What is significant in whole-genome linkage disequilibrium studies? Am J Hum Genet 1997 61: 810–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Terwilliger JD, Weiss KM . Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol 1998 9: 578–594

    Article  CAS  PubMed  Google Scholar 

  17. Wright AF, Carothers AD, Pirastu M . Population choice in mapping genes for complex disease Nat Genet 1999 23: 397–404

    Article  CAS  PubMed  Google Scholar 

  18. Pennisi E . A closer look at SNPs suggests difficulties Science 1998 281: 1787–1789

    Article  CAS  PubMed  Google Scholar 

  19. Stone EM, Fingert JH, Alward WLM, Nguyen TD, Polansky JR, Sunden SLF et al. Identification of the gene that causes primary open angle glaucoma Science 1997 275: 668–670

    Article  CAS  PubMed  Google Scholar 

  20. Scott WK, Pericak-Vance MA, Haines JL . Genetic analysis of complex diseases Science 1997 275: 1327

    Article  CAS  PubMed  Google Scholar 

  21. Concannon P, Gogolin-Ewens KJ, Hinds DA, Wapelhorst B, Morrison VA, Stirling B et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus Nat Genet 1998 19: 292–296

    Article  CAS  PubMed  Google Scholar 

  22. Craddock N, Khodel V, Van Eerdewegh P, Reich T . Mathematical limits for multi-locus models Am J Hum Genet 1995 57: 690–702

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibbs M, Stanford JL, Jarvik GP, Janer M, Badzioch M, Peters MA et al. A genomic scan of families with prostate cancer identifies multiple regions of interest Am J Hum Genet 2000 67: 100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buhler J, Owerbach D, Schaffer AA, Kimmel M, Gabbay KH . Linkage analysis in type I diabetes mellitus using CASPAR, a software and statistical program for conditional analysis of polygenic diseases Hum Hered 1997 47: 211–222

    Article  CAS  PubMed  Google Scholar 

  25. Cox NJ, Frigge M, Nicolae DL, Concannon P, Hanis CL, Bell GI et al. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans Nat Genet 1999 21: 213–215

    Article  CAS  PubMed  Google Scholar 

  26. Lucek P, Hanke J, Reich J, Solla S, Ott J . Multi-locus nonparametric linkage analysis of complex trait loci with neural networks Hum Genet 1998 48: 275–284

    CAS  Google Scholar 

  27. Hoh JJ, Ott J . Complex inheritance and localizing disease genes Hum Hered 2000 50: 85–89

    Article  CAS  PubMed  Google Scholar 

  28. Tu I-P, Whittemore AS . Power of association and linkage tests when the disease alleles are unobserved Am J Hum Genet 1999 64: 641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ott J . Analysis of Human Genetic Linkage, 3rd edn The Johns Hopkins University Press: Baltimore and London 1999

    Google Scholar 

  30. Baron M . Optimal ascertainment strategies to detect linkage to common disease alleles Am J Hum Genet 1999 64: 1243–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hauser ER, Boehnke M, Guo S-W, Risch N . Affected sib-pair interval mapping and exclusion for complex genetic traits: sampling considerations Genet Epidemiol 1996 13: 117–137

    Article  CAS  PubMed  Google Scholar 

  32. Gu C, Province M, Todorov A, Rao DC . Meta-analysis methodology for combining non-parametric sibpair linkage results: genetic homogeneity and identical markers Genet Epidemiol 1998 15: 609–626.32

    Article  CAS  PubMed  Google Scholar 

  33. Wise LH, Lanchbury JJ, Lewis CM . Meta-analysis of genome searches Ann Hum Genet 1999 63: 263–272

    Article  CAS  PubMed  Google Scholar 

  34. Rice J . The role of meta-analysis in linkage studies of complex traits Am J Med Genet 1997 74: 112–114

    Article  CAS  PubMed  Google Scholar 

  35. Aita VM, Liu J, Knowles JA, Terwilliger JD, Baltazar R, Grunn A et al. A comprehensive linkage analysis of chromosome 21q22 supports prior evidence of a putative bipolar affective disorder locus Am J Hum Genet 1999 64: 210–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G et al. A high-density linkage scan detects evidence for a bipolar disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2 Proc Natl Acad Sci USA 1999 96: 5604–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lernmark A, Ott J . Sometimes it's hot, sometimes it's not Nat Genet 1998 19: 213–214

    Article  CAS  PubMed  Google Scholar 

  38. Martin ER, Kaplan NL, Weir BS . Tests for linkage and association in nuclear families Am J Hum Genet 1997 61: 439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teng J, Siegmund D . Combining within and between pedigrees for mapping complex traits Am J Hum Genet 1997 60: 979–992

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Trembath RC, Clough RL, Rosbotham JL, Jones AB, Camp RDR, Frodsham A et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two-stage genomewide search in psoriasis Hum Mol Genet 1997 6: 813–820

    Article  CAS  PubMed  Google Scholar 

  41. Kainulainen K, Perola M, Terwilliger J, Kaprio J, Koskenvuo M, Syvanen A-C et al. Evidence for involvement of the type 1 angiotensin II receptor locus in essential hypertension Hypertension 1999 33: 844–849

    Article  CAS  PubMed  Google Scholar 

  42. Peltonen L . Positional cloning of disease genes: advantages of genetic isolates Hum Hered 2000 50: 66–75

    Article  CAS  PubMed  Google Scholar 

  43. Eaves IA, Merriman TR, Barber RA, Nutland S, Tuomilehto-Wolf E, Tuomilehto J et al. The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilbrium mapping of common disease genes Nat Genet 2000 25: 320–323

    Article  CAS  PubMed  Google Scholar 

  44. Rao DC, Province MA . The future of path analysis, segregation analysis, and combined models for genetic dissection of complex traits Hum Hered 2000 50: 34–42

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Baron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, M. The search for complex disease genes: fault by linkage or fault by association?. Mol Psychiatry 6, 143–149 (2001). https://doi.org/10.1038/sj.mp.4000845

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000845

Keywords

This article is cited by

Search

Quick links