Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proclivity to self-injurious behavior in MRL-lpr mice: implications for autoimmunity-induced damage in the dopaminergic system

Abstract

Systemic lupus erythematosus is frequently accompanied by psychiatric manifestations of unknown origin. Although damage of central neurons had been documented, little is known about neurotransmitter systems affected by the autoimmune/inflammatory process. Recent studies on lupus-prone MRL-lpr mice point to imbalanced dopamine function and neurodegeneration in dopamine-rich brain regions. We follow up on anecdotal observations of singly housed mice developing chest wounds. Compulsive grooming and/or skin biting accounted for open lesions, lending itself to the operational term ‘self-injurious behavior’ (SIB). Low incidence of spontaneous SIB increased significantly after repeated injections of dopamine-2/3 receptor (D2/D3R) agonist quinpirole (QNP). To further probe the dopaminergic circuitry and examine whether SIB is associated with development of lupus-like disease, we compared behavioral responses among cohorts that differed in the immune status. Two-week treatment with QNP (intraperitoneal, 0.5 mg kg−1 body weight per day) induced SIB in 60% of diseased MRL-lpr mice, and exacerbated their splenomegaly. Although increased grooming and stereotypy were observed in less symptomatic MRL+/+ controls, only one mouse (10%) developed SIB. Similarly, SIB was not seen in young, asymptomatic groups despite dissimilar ambulatory responses to QNP. In situ hybridization revealed treatment-independent upregulation of D2R mRNA in substantia nigra of diseased MRL-lpr mice. The above results suggest that development of systemic autoimmunity alters sensitivity of the dopaminergic system and renders MRL-lpr mice prone to SIB. Although pathogenic factors were not examined, we hypothesize that immune and endocrine mechanisms jointly contribute to early neuronal damage, which underlies behavioral deficiency in the adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Baum KA, Hopf U, Nehrig C, Stover M, Schorner W . Systemic lupus erythematosus: neuropsychiatric signs and symptoms related to cerebral MRI findings. Clin Neurol Neurosurg 1993; 95: 29–34.

    Article  CAS  Google Scholar 

  2. Bosma GP, Middelkoop HA, Rood MJ, Bollen EL, Huizinga TW, van Buchem MA . Association of global brain damage and clinical functioning in neuropsychiatric systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2665–2672.

    Article  Google Scholar 

  3. Bosma GP, Rood MJ, Zwinderman AH, Huizinga TW, van Buchem MA . Evidence of central nervous system damage in patients with neuropsychiatric systemic lupus erythematosus, demonstrated by magnetization transfer imaging. Arthritis Rheum 2000; 43: 48–54.

    Article  CAS  Google Scholar 

  4. Oda K, Matsushima E, Okubo Y, Ohta K, Murata Y, Koike R et al. Abnormal regional cerebral blood flow in systemic lupus erythematosus patients with psychiatric symptoms. J Clin Psychiatry 2005; 66: 907–913.

    Article  Google Scholar 

  5. Trysberg E, Nylen K, Rosengren LE, Tarkowski A . Neuronal and astrocytic damage in systemic lupus erythematosus patients with central nervous system involvement. Arthritis Rheum 2003; 48: 2881–2887.

    Article  Google Scholar 

  6. Trysberg E, Tarkowski A . Cerebral inflammation and degeneration in systemic lupus erythematosus. Curr Opin Rheumatol 2004; 16: 527–533.

    Article  Google Scholar 

  7. Theofilopoulos AN . Murine models of lupus. In: Lahita RG (ed). Systemic Lupus Erythematosus, 2 edn. Churchill Livingstone: New York, 1992, pp 121–194.

    Google Scholar 

  8. Alexander EL, Murphy ED, Roths JB, Alexander GE . Congenic autoimmune murine models of central nervous system disease in connective tissue disorders. Ann Neurol 1983; 14: 242–248.

    Article  CAS  Google Scholar 

  9. Sakic B, Szechtman H, Denburg JA . Neurobehavioral alteration in autoimmune mice. Neurosci Biobehav Rev 1997; 21: 327–340.

    Article  CAS  Google Scholar 

  10. Vogelweid CM, Johnson GC, Besch-Williford CL, Basler J, Walker SE . Inflammatory central nervous system disease in lupus-prone MRL/lpr mice: comparative histologic and immunohistochemical findings. J Neuroimmunol 1991; 35: 89–99.

    Article  CAS  Google Scholar 

  11. Jennings JE, Sundgren PC, Attwood J, McCune J, Maly P . Value of MRI of the brain in patients with systemic lupus erythematosus and neurologic disturbance. Neuroradiology 2004; 46: 15–21.

    Article  CAS  Google Scholar 

  12. Denenberg VH, Sherman GF, Rosen GD, Morrison L, Behan PO, Galaburda AM . A behavior profile of the MRL/Mp lpr/lpr mouse and its association with hydrocephalus. Brain Behav Immun 1992; 6: 40–49.

    Article  CAS  Google Scholar 

  13. Sakic B, Szechtman H, Denburg JA, Gorny G, Kolb B, Whishaw IQ . Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL-lpr mice. J Neuroimmunol 1998; 87: 162–170.

    Article  CAS  Google Scholar 

  14. Sakic B, Kolb B, Whishaw IQ, Gorny G, Szechtman H, Denburg JA . Immunosuppression prevents neuronal atrophy in lupus-prone mice: evidence for brain damage induced by autoimmune disease? J Neuroimmunol 2000; 111: 93–101.

    Article  CAS  Google Scholar 

  15. Ballok DA, Woulfe J, Sur M, Cyr M, Sakic B . Hippocampal damage in mouse and human forms of systemic autoimmune disease. Hippocampus 2004; 14: 649–661.

    Article  Google Scholar 

  16. Ballok DA, Millward JM, Sakic B . Neurodegeneration in autoimmune MRL-lpr mice as revealed by Fluoro Jade B staining. Brain Res 2003; 964: 200–210.

    Article  CAS  Google Scholar 

  17. Elhwuegi AS . Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 435–451.

    Article  CAS  Google Scholar 

  18. Sakic B, Lacosta S, Denburg J, Szechtman H . Altered neurotransmission in brains of autoimmune mice: pharmacological and neurochemical evidence. J Neuroimmunol 2002; 129: 84–96.

    Article  CAS  Google Scholar 

  19. Wagner GC, Avena N, Kita T, Nakashima T, Fisher H, Halladay AK . Risperidone reduction of amphetamine-induced self-injurious behavior in mice. Neuropharmacology 2004; 46: 700–708.

    Article  CAS  Google Scholar 

  20. Mori T, Ito S, Kita T, Narita M, Suzuki T, Sawaguchi T . Effects of mu-, delta- and kappa-opioid receptor agonists on methamphetamine-induced self-injurious behavior in mice. Eur J Pharmacol 2006; 532: 81–87.

    Article  CAS  Google Scholar 

  21. Saito Y, Takashima S . Neurotransmitter changes in the pathophysiology of Lesch–Nyhan syndrome. Brain Dev 2000; 22 (Suppl 1): S122–S131.

    Article  Google Scholar 

  22. Breese GR, Knapp DJ, Criswell HE, Moy SS, Papadeas ST, Blake BL . The neonate-6-hydroxydopamine-lesioned rat: a model for clinical neuroscience and neurobiological principles. Brain Res Brain Res Rev 2005; 48: 57–73.

    Article  CAS  Google Scholar 

  23. Deutsch SI, Long KD, Rosse RB, Mastropaolo J, Eller J . Hypothesized deficiency of guanine-based purines may contribute to abnormalities of neurodevelopment, neuromodulation, and neurotransmission in Lesch–Nyhan syndrome. Clin Neuropharmacol 2005; 28: 28–37.

    Article  CAS  Google Scholar 

  24. Ballok DA, Earls AM, Krasnik C, Hoffman SA, Sakic B . Autoimmune-induced damage of the midbrain dopaminergic system in lupus-prone mice. J Neuroimmunol 2004; 152: 83–97.

    Article  CAS  Google Scholar 

  25. Anderson KK, Ballok DA, Prasad N, Szechtman H, Sakic B . Impaired response to amphetamine and neuronal degeneration in the nucleus accumbens of autoimmune MRL-lpr mice. Behav Brain Res 2006; 166: 32–38.

    Article  CAS  Google Scholar 

  26. Zhou LW, Qin ZH, Weiss B . Downregulation of stereotyped behavior and production of latent locomotor behaviors in mice treated continuously with quinpirole. Neuropsychopharmacology 1991; 4: 47–55.

    CAS  PubMed  Google Scholar 

  27. Yokoyama C, Okamura H . Self-injurious behavior and dopaminergic neuron system in neonatal 6-hydroxydopamine-lesioned rat: 1. Dopaminergic neurons and receptors. J Pharmacol Exp Ther 1997; 280: 1016–1030.

    CAS  PubMed  Google Scholar 

  28. Whitaker NG, Lindstrom TD . Disposition and biotransformation of quinpirole, a new D-2 dopamine agonist antihypertensive agent, in mice, rats, dogs, and monkeys. Drug Metab Dispos 1987; 15: 107–113.

    CAS  PubMed  Google Scholar 

  29. Akhisaroglu M, Kurtuncu M, Manev H, Uz T . Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice. Pharmacol Biochem Behav 2005; 80: 371–377.

    Article  CAS  Google Scholar 

  30. Shishido T, Watanabe Y, Kato K, Horikoshi R, Niwa SI . Effects of dopamine, NMDA, opiate, and serotonin-related agents on acute methamphetamine-induced self-injurious behavior in mice. Pharmacol Biochem Behav 2000; 66: 579–583.

    Article  CAS  Google Scholar 

  31. Maric D, Millward JM, Ballok DA, Szechtman H, Barker JL, Denburg JA et al. Neurotoxic properties of cerebrospinal fluid from behaviorally impaired autoimmune mice. Brain Res 2001; 920: 183–193.

    Article  CAS  Google Scholar 

  32. Sakic B, Kirkham DL, Ballok DA, Mwanjewe J, Fearon IM, Macri J et al. Proliferating brain cells are a target of neurotoxic CSF in systemic autoimmune disease. J Neuroimmunol 2005; 169: 68–85.

    Article  CAS  Google Scholar 

  33. Sakic B, Szechtman H, Keffer M, Talangbayan H, Stead R, Denburg JA . A behavioral profile of autoimmune lupus-prone MRL mice. Brain Behav Immun 1992; 6: 265–285.

    Article  CAS  Google Scholar 

  34. Sakic B, Laflamme N, Crnic LS, Szechtman H, Denburg JA, Rivest S . Reduced corticotropin-releasing factor and enhanced vasopressin gene expression in brains of mice with autoimmunity-induced behavioral dysfunction. J Neuroimmunol 1999; 96: 80–91.

    Article  CAS  Google Scholar 

  35. Cooper JR, Bloom FE, Roth RH . Dopamine. In: Cooper JR, Bloom FE, Robert RH, (eds). The Biochemical Basis of Neuropharmacology, 8th edn. Oxford University Press Inc.: New York, 2002 pp 293–351.

    Google Scholar 

  36. Petitto JM, Huang Z, Lo J, Beck RD, Rinker C, Hartemink DA . Relationship between the development of autoimmunity and sensorimotor gating in MRL-lpr mice with reduced IL-2 production. Neurosci Lett 2002; 328: 304–308.

    Article  CAS  Google Scholar 

  37. Peng RY, Mansbach RS, Braff DL, Geyer MA . A D2 dopamine receptor agonist disrupts sensorimotor gating in rats. Implications for dopaminergic abnormalities in schizophrenia. Neuropsychopharmacology 1990; 3: 211–218.

    CAS  PubMed  Google Scholar 

  38. Tsao CW, Lin YS, Cheng JT . Effect of dopamine on immune cell proliferation in mice. Life Sci 1997; 61: L-71.

    Article  Google Scholar 

  39. Ilani T, Strous RD, Fuchs S . Dopaminergic regulation of immune cells via D3 dopamine receptor: a pathway mediated by activated T cells. FASEB J 2004; 18: 1600–1602.

    Article  CAS  Google Scholar 

  40. Delfs JM, Kelley AE . The role of D1 and D2 dopamine receptors in oral stereotypy induced by dopaminergic stimulation of the ventrolateral striatum. Neuroscience 1990; 39: 59–67.

    Article  CAS  Google Scholar 

  41. Neal-Beliveau BS, Joyce JN . Timing: a critical determinant of the functional consequences of neonatal 6-OHDA lesions. Neurotoxicol Teratol 1999; 21: 129–140.

    Article  CAS  Google Scholar 

  42. Kostrzewa RM . Dopamine receptor supersensitivity. Neurosci Biobehav Rev 1995; 19: 1–17.

    Article  CAS  Google Scholar 

  43. Sakic B, Hanna SE, Millward JM . Behavioral heterogeneity in an animal model of neuropsychiatric lupus. Biol Psychiatry 2005; 57: 679–687.

    Article  Google Scholar 

  44. Lechner O, Dietrich H, Oliveira dos SA, Wiegers GJ, Schwarz S, Harbutz M et al. Altered circadian rhythms of the stress hormone and melatonin response in lupus-prone MRL/MP-fas(Ipr) mice. J Autoimmun 2000; 14: 325–333.

    Article  CAS  Google Scholar 

  45. Wrobel A, Zebrowska-Lupina I, Wielosz M . Dexamethasone reduces locomotor stimulation induced by dopamine agonists in mice. Pharmacol Rep 2005; 57: 451–457.

    Article  CAS  Google Scholar 

  46. Park C, Sakamaki K, Tachibana O, Yamashima T, Yamashita J, Yonehara S . Expression of Fas antigen in the normal mouse brain. Biochem Biophys Res Commun 1998; 252: 623–628.

    Article  CAS  Google Scholar 

  47. Tang B, Matsuda T, Akira S, Nagata N, Ikehara S, Hirano T et al. Age-associated increase in interleukin 6 in MRL/lpr mice. Int Immunol 1991; 3: 273–278.

    Article  CAS  Google Scholar 

  48. Anisman H, Merali Z, Hayley S . Sensitization associated with stressors and cytokine treatments. Brain Behav Immun 2003; 17: 86–93.

    Article  CAS  Google Scholar 

  49. Tepper JM, Sun BC, Martin LP, Creese I . Functional roles of dopamine D2 and D3 autoreceptors on nigrostriatal neurons analyzed by antisense knockdown in vivo. J Neurosci 1997; 17: 2519–2530.

    Article  CAS  Google Scholar 

  50. Stanwood GD, Lucki I, McGonigle P . Differential regulation of dopamine D2 and D3 receptors by chronic drug treatments. J Pharmacol Exp Ther 2000; 295: 1232–1240.

    CAS  PubMed  Google Scholar 

  51. Kostrzewa RM, Kostrzewa JP, Nowak P, Kostrzewa RA, Brus R . Dopamine D2 agonist priming in intact and dopamine-lesioned rats. Neurotox Res 2004; 6: 457–462.

    Article  Google Scholar 

  52. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS . Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 2000; 20: 6309–6316.

    Article  CAS  Google Scholar 

  53. Lawson LJ, Perry VH, Dri P, Gordon S . Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39: 151–170.

    Article  CAS  Google Scholar 

  54. Ballok DA, Ma X, Denburg JA, Arsenault L, Sakic B . Ibuprofen fails to prevent brain pathology in a model of neuropsychiatric lupus. J Rheumatol 2006; 33: 2199–2213.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C . The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 2002; 202: 13–23.

    Article  CAS  Google Scholar 

  56. Graham DG . Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 1978; 14: 633–643.

    CAS  PubMed  Google Scholar 

  57. Asanuma M, Miyazaki I, Ogawa N . Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res 2003; 5: 165–176.

    Article  Google Scholar 

  58. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001; 65: 135–172.

    Article  CAS  Google Scholar 

  59. Faber-Elmann A, Eilat E, Zinger H, Mozes E . A peptide based on an anti-DNA autoantibody downregulates matrix metalloproteinases in murine models of lupus. Clin Immunol 2002; 105: 223–232.

    Article  CAS  Google Scholar 

  60. Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V et al. COX-2 and neurodegeneration in Parkinson's disease. Ann N Y Acad Sci 2003; 991: 272–277.

    Article  CAS  Google Scholar 

  61. Lal H, Forster MJ . Autoimmunity and age-associated cognitive decline. Neurobiol Aging 1988; 9: 733–742.

    Article  CAS  Google Scholar 

  62. Zameer A, Hoffman SA . Immunoglobulin binding to brain in autoimmune mice. J Neuroimmunol 2001; 120: 10–18.

    Article  CAS  Google Scholar 

  63. Sidor MM, Sakic B, Malinowski PM, Ballok DA, Oleschuk CJ, Macri J . Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J Neuroimmunol 2005; 165: 104–113.

    Article  CAS  Google Scholar 

  64. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B . A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001; 7: 1189–1193.

    Article  CAS  Google Scholar 

  65. Alexander JJ, Zwingmann C, Quigg R . MRL/lpr mice have alterations in brain metabolism as shown with [(1)H-(13)C] NMR spectroscopy. Neurochem Int 2005; 47: 143–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Henry Szechtman for his constructive comments on our article. This work was supported by funds from the National Institute of Health (1R21 AR49163-01) and Canadian Institutes of Health Research (grant MOP 38065). B Sakic is a recipient of the Father Sean O’Sullivan Research Centre (FSORC) career development award. S Chun is a recipient of the NSERC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Sakic.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, S., McEvilly, R., Foster, J. et al. Proclivity to self-injurious behavior in MRL-lpr mice: implications for autoimmunity-induced damage in the dopaminergic system. Mol Psychiatry 13, 1043–1053 (2008). https://doi.org/10.1038/sj.mp.4002078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002078

Keywords

This article is cited by

Search

Quick links