Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Towards a muscarinic hypothesis of schizophrenia

Abstract

Although the neurotransmitter dopamine plays a prominent role in the pathogenesis and treatment of schizophrenia, the dopamine hypothesis of schizophrenia fails to explain all aspects of this disorder. It is increasingly evident that the pathology of schizophrenia also involves other neurotransmitter systems. Data from many streams of research including pre-clinical and clinical pharmacology, treatment studies, post-mortem studies and neuroimaging suggest an important role for the muscarinic cholinergic system in the pathophysiology of schizophrenia. This review will focus on evidence that supports the hypothesis that the muscarinic system is involved in the pathogenesis of schizophrenia and that muscarinic receptors may represent promising novel targets for the treatment of this disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldberg TE, Gold JM, Greenberg R, Griffin S, Schulz SC, Pickar D et al. Contrasts between patients with affective disorders and patients with schizophrenia on a neuropsychological test battery. Am J Psychiatry 1993; 150: 1355–1362.

    Article  CAS  PubMed  Google Scholar 

  2. Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR . Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 2000; 57: 907–913.

    Article  CAS  PubMed  Google Scholar 

  3. Siris SG . Depression in schizophrenia. In: Hirsch SR, Weinberger DR (eds). Schizophrenia. Blackwell Science Ltd.: Oxford, 1995, pp 128–146.

    Google Scholar 

  4. Green MF . What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 1996; 153: 321–330.

    Article  CAS  PubMed  Google Scholar 

  5. Carlsson A . The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988; 1: 179–186.

    Article  CAS  PubMed  Google Scholar 

  6. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481–483.

    Article  CAS  PubMed  Google Scholar 

  7. Seeman P, Lee T, Chau-Wong M, Wong K . Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717–719.

    Article  CAS  PubMed  Google Scholar 

  8. Kapur S, Remington G . Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol Psychiatry 2001; 50: 873–883.

    Article  CAS  PubMed  Google Scholar 

  9. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 1996; 93: 9235–9240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998; 155: 761–767.

    Article  CAS  PubMed  Google Scholar 

  11. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997; 94: 2569–2574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 2000; 97: 8104–8109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 2006; 49: 603–615.

    Article  CAS  PubMed  Google Scholar 

  14. Snyder SH . Dopamine receptor excess and mouse madness. Neuron 2006; 49: 484–485.

    Article  CAS  PubMed  Google Scholar 

  15. Olney JW, Farber NB . Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995; 52: 998–1007.

    Article  CAS  PubMed  Google Scholar 

  16. Konradi C, Heckers S . Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97: 153–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benes FM, Berretta S . GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001; 25: 1–27.

    Article  CAS  PubMed  Google Scholar 

  18. Meltzer HY . Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 1989; 99: S18–S27.

    Article  PubMed  Google Scholar 

  19. Freedman R, Adams CE, Leonard S . The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 2000; 20: 299–306.

    Article  CAS  PubMed  Google Scholar 

  20. Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 2006; 63: 630–638.

    Article  CAS  PubMed  Google Scholar 

  21. Cooper JR, Bloom FE, Roth RH (eds). The Biochemical Basis of Neuropharmacology. Oxford University Press: New York, USA, 1996.

    Google Scholar 

  22. Sarter M, Parikh V . Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 2005; 6: 48–56.

    Article  CAS  PubMed  Google Scholar 

  23. Mesulam MM, Mufson EJ, Levey AI, Wainer BH . Cortical innervation of cortex. J Comp Neurol 1983; 214: 170–197.

    Article  CAS  PubMed  Google Scholar 

  24. Perry E, Walker M, Grace J, Perry R . Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999; 22: 273–280.

    Article  CAS  PubMed  Google Scholar 

  25. Mesulam MM . The cholinergic innervation of the human cerebral cortex. Prog Brain Res 2004; 145: 67–78.

    Article  PubMed  Google Scholar 

  26. Deutsch JA . The cholinergic synapse and the site of memory. Science 1971; 174: 788–794.

    Article  CAS  PubMed  Google Scholar 

  27. Bartus RT, Dean III RL, Beer B, Lippa AS . The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408–414.

    Article  CAS  PubMed  Google Scholar 

  28. Kozak R, Bruno JP, Sarter M . Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 2006; 16: 9–17.

    Article  PubMed  Google Scholar 

  29. Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF et al. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 2006; 9: 175–178.

    Article  CAS  PubMed  Google Scholar 

  30. Minzenberg MJ, Poole JH, Benton C, Vinogradov S . Association of anticholinergic load with impairment of complex attention and memory in schizophrenia. Am J Psychiatry 2004; 161: 116–124.

    Article  PubMed  Google Scholar 

  31. Dale HH . The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 1914; 6: 147–190.

    CAS  Google Scholar 

  32. Picciotto M, Caldarone BJ, King SL, Zachariou V . Nicotinic receptors in the brain: links between molecular biology and behavior. Neuropsychopharmacology 2000; 22: 451–465.

    Article  CAS  PubMed  Google Scholar 

  33. Popot JL, Sugiyame H, Changeux JP . Studies on the electrogenic action of acetylcholine with torpedo marmorata electric organ II. The permeability response of the receptor-rich membrane fragments to cholinergic agonists in vitro. J Mol Biol 1976; 106: 469–483.

    Article  CAS  PubMed  Google Scholar 

  34. Conti-Tronconi BM, Hunkapiller MW, Lindstrom JM, Raftery A . Subunit structure of the acetylcholine receptor from electrophorus electricus. Proc Natl Acad Sci USA 1982; 79: 6489–6493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Felder CC . Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 1995; 9: 619–625.

    Article  CAS  PubMed  Google Scholar 

  36. Lucas-Meunier E, Fossier P, Baux G, Amar M . Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003; 446: 17–29.

    Article  CAS  PubMed  Google Scholar 

  37. Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR et al. Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned and laterodorsal tegmental nucleus-lesioned rats. J Neurosci 1996; 16: 714–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lokwan S, Overton P, Berry M, Berry MS, Clark D . Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons. Neuroscience 1999; 92: 245–254.

    Article  CAS  PubMed  Google Scholar 

  39. Wu M, Shanabrough M, Leranth C, Alreja M . Cholinergic excitation of septohippocampal GABA but not cholinergic neurons: implications for learning and memory. J Neurosci 2000; 20: 3900–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Atzori M, Kanold PO, Pineda JC, Flores-Hernandez J, Paz RD . Dopamine prevents muscarinic-induced decrease of glutamate release in the auditory cortex. Neuroscience 2005; 134: 1153–1165.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J . Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J Neurosci 2002; 22: 6347–6352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M et al. Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 1986; 323: 411–416.

    Article  CAS  PubMed  Google Scholar 

  43. Van Zwieten PA . Adrenergic and muscarinergic receptors: classification, pathophysiological relevance and drug target. J Hypertens 1991; 9: 518–527.

    Google Scholar 

  44. Spiegel AM, Shenker A, Weinstein LS . Receptor–effector coupling by g-proteins – implications for normal and abnormal signal transduction. Endocr Rev 1992; 13: 536–565.

    Article  CAS  PubMed  Google Scholar 

  45. Wess J . Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol Sci 1993; 14: 308–313.

    Article  CAS  PubMed  Google Scholar 

  46. Raiteri M, Leardi R, Marchi M . Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J Pharmacol Exp Ther 1984; 228: 209–214.

    CAS  PubMed  Google Scholar 

  47. Wamsley JK, Zarbin MA, Kuhar MJ . Distribution of muscarinic cholinergic high and low affinity agonist binding sites: a light microscopic autoradiographic study. Brain Res Bull 1984; 12: 233–243.

    Article  CAS  PubMed  Google Scholar 

  48. Vizi ES, Kobayashi O, Torocsik A, Kinjo M, Nagashima H, Manabe N et al. Heterogeneity of presynaptic muscarinic receptors involved in modulation of transmitter release. Neuroscience 1989; 31: 259–267.

    Article  CAS  PubMed  Google Scholar 

  49. Raiteri M, Marchi M, Paudice P, Pittaluga A . Muscarinic receptors mediating inhibition of γ-aminobutyric acid release in rat corpus striatum and their pharmacological characterization. J Pharmacol Exp Ther 1990; 254: 496–501.

    CAS  PubMed  Google Scholar 

  50. Watling KJ, Kebabian JW, Neumeyer JL (eds). The RBI Handbook of Receptor Classification and Signal Transduction. Research Biochemicals International: Natick, MA, 1995.

    Google Scholar 

  51. Bonner TI, Buckley NJ, Young AC, Brann MR . Identification of a family of muscarinic acetylcholine receptor genes. Science 1987; 237: 527–532.

    Article  CAS  PubMed  Google Scholar 

  52. Bonner TI, Young AC, Brann MR, Buckley NJ . Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1988; 1: 403–410.

    Article  CAS  PubMed  Google Scholar 

  53. Buckley NJ, Bonner TI, Buckley CM, Brann MR . Antagonist binding properties of five cloned muscarinic receptors expresses in CHO-K1 cells. Mol Pharmacol 1989; 35: 469–476.

    CAS  PubMed  Google Scholar 

  54. Hulme EC, Birdsall NJM, Buckley NJ . Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 1990; 30: 633–673.

    Article  CAS  PubMed  Google Scholar 

  55. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR . Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 1991; 11: 3218–3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI . Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer's disease. J Neurochem 1995; 64: 1888–1891.

    Article  CAS  PubMed  Google Scholar 

  57. Flynn DD, Mash DC . Distinct kinetic binding properties of N-[3H]-methylscopolamine afford differential labeling and localization of M1, M2, and M3 muscarinic receptor subtypes in primate brain. Synapse 1993; 14: 283–296.

    Article  CAS  PubMed  Google Scholar 

  58. Li M, Yasuda RP, Wall SJ, Wellstein A, Wolfe BB . Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors. Mol Pharmacol 1991; 40: 28–35.

    CAS  PubMed  Google Scholar 

  59. Vilaro MT, Wiederhold K-H, Palacios JM, Mengod G . Mucarinic cholinergic receptors in the rat caudate-putamen and olfactory tubercle belong predominantly to the m4 class: in situ hybridization and receptor autoradiography evidence. Neuroscience 1991; 40: 159–167.

    Article  CAS  PubMed  Google Scholar 

  60. Wall SJ, Yasuda RP, Hory F, Flagg S, Martin BM, Ginns EI et al. Production of antisera selective for m1 muscarinic receptors using fusion proteins: distribution of m1 receptors in rat brain. Mol Pharmacol 1991; 39: 643–649.

    CAS  PubMed  Google Scholar 

  61. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA et al. Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 1993; 43: 149–157.

    CAS  PubMed  Google Scholar 

  62. Buckley NJ, Bonner TI, Brann MR . Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci 1988; 8: 4646–4652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liao CF, Themmen APN, Joho R, Barberis C, Birnbaumer M, Birnbaumer L . Molecular cloning and expression of a fifth muscarinic acetylcholine receptor. J Biol Chem 1989; 264: 7328–7337.

    CAS  PubMed  Google Scholar 

  64. Vilaro MT, Palacios JM, Mengod G . Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 1990; 114: 154–159.

    Article  CAS  PubMed  Google Scholar 

  65. Miller AD, Blaha CD . Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. Eur J Neurosci 2005; 21: 1837–1846.

    Article  PubMed  Google Scholar 

  66. Mrzljak L, Levey AI, Goldman-Rakic PS . Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: morphological evidence for cholinergic modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 1993; 90: 5194–5198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baghdoyan HA, Lydic R, Fleegal MA . M2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation. J Pharmacol Exp Ther 1998; 286: 1446–1452.

    CAS  PubMed  Google Scholar 

  68. Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J . Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 2002; 22: 1709–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stoll C, Schwarzwalder U, Johann S, Lambrecht G, Hertting G, Feuerstein TJ et al. Characterization of muscarinic autoreceptors in the rabbit hippocampus and caudate nucleus. Neurochem Res 2003; 28: 413–417.

    Article  CAS  PubMed  Google Scholar 

  70. Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, McKnight GS et al. Disruption of the M1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 1997; 94: 13311–13316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J et al. Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 1999; 96: 1692–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J et al. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 1999; 96: 10483–10488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shapiro MS, Loose MD, Hamilton SE, Nathanson NM, Gomeza J, Wess J et al. Assignment of muscarinic receptor subtypes mediating G-protein modulation of Ca(2+) channels by using knockout mice. Proc Natl Acad Sci USA 1999; 96: 10899–10904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 2003; 6: 51–58.

    Article  CAS  PubMed  Google Scholar 

  75. Bymaster FP, Carter PA, Yamada M, Gomeza J, Wess J, Hamilton SE et al. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity. Eur J Neurosci 2003; 17: 1403–1410.

    Article  PubMed  Google Scholar 

  76. Bymaster FP, McKinzie DL, Felder CC, Wess J . Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 2003; 28: 437–442.

    Article  CAS  PubMed  Google Scholar 

  77. Holt DJ, Herman MM, Hyde TM, Kleinman JE, Sinton CM, German DC et al. Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 1999; 94: 21–31.

    Article  CAS  PubMed  Google Scholar 

  78. Holt DJ, Bachus SE, Hyde TM, Wittie M, Herman MM, Vangel M et al. Reduced density of cholinergic interneurons in the ventral striatum in schizophrenia: an in situ hybridization study. Biol Psychiatry 2005; 58: 408–416.

    Article  CAS  PubMed  Google Scholar 

  79. Karson CN, Casanova MF, Kleinman JE, Griffin WS . Choline acetyltransferase in schizophrenia. Am J Psychiatry 1993; 150: 454–459.

    Article  CAS  PubMed  Google Scholar 

  80. Garcia-Rill E, Biedermann JA, Chambers T, Skinner RD, Mrak RE, Husain M et al. Mesopontine neurons in schizophrenia. Neuroscience 1995; 66: 321–335.

    Article  CAS  PubMed  Google Scholar 

  81. German DC, Manaye KF, Wu D, Hersh LB, Zweig RM . Mesopontine cholinergic and non-cholinergic neurons in schizophrenia. Neuroscience 1999; 94: 33–38.

    Article  CAS  PubMed  Google Scholar 

  82. Bennett Jr JP, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH . Neurotransmitter receptors in frontal cortex of schizophrenics. Arch Gen Psychiatry 1979; 36: 927–934.

    Article  CAS  PubMed  Google Scholar 

  83. Watanabe S, Nishikawa T, Takashima M, Toru M . Increased muscarinic cholinergic receptors in prefrontal cortices of medicated schizophrenics. Life Sci 1983; 33: 2187–2196.

    Article  CAS  PubMed  Google Scholar 

  84. Toru M, Watanabe S, Shibuya H, Nishikawa T, Noda K, Mitsushio H et al. Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 1988; 78: 121–137.

    Article  CAS  PubMed  Google Scholar 

  85. Dean B, Crook JM, Opeskin K, Hill C, Keks N, Copolov DL . The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1996; 1: 54–58.

    CAS  PubMed  Google Scholar 

  86. Crook JM, Dean B, Pavey G, Copolov D . The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci 1999; 64: 1761–1771.

    Article  CAS  PubMed  Google Scholar 

  87. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B . Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 2000; 48: 381–388.

    Article  CAS  PubMed  Google Scholar 

  88. Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B . Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann's areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 2001; 158: 918–925.

    Article  CAS  PubMed  Google Scholar 

  89. Dean B, McLeod M, Keriakous D, McKenzie J, Scarr E . Decreased muscarinic(1) receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2002; 7: 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  90. Scarr E, Keriakous D, Crossland N, Dean B . No change in cortical muscarinic M2, M3 receptors or [(35)S]GTPgammaS binding in schizophrenia. Life Sci 2006; 78: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  91. Scarr E, Sundram S, Keriakous D, Dean B . Changes in muscarinic M4, but not M1, receptor expression in the hippocampus from subjects with schizophrenia. Biol Psychiatry (in press).

  92. Zavitsanou K, Katsifis A, Yu Y, Huang XF . M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 2005; 65: 397–403.

    Article  CAS  PubMed  Google Scholar 

  93. Katerina Z, Andrew K, Filomena M, Xu-Feng H . Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 2004; 29: 619–625.

    Article  CAS  PubMed  Google Scholar 

  94. Deng C, Huang XF . Decreased density of muscarinic receptors in the superior temporal gyrus in schizophrenia. J Neurosci Res 2005; 81: 883–890.

    Article  CAS  PubMed  Google Scholar 

  95. Mancama D, Arranz MJ, Landau S, Kerwin R . Reduced expression of the muscarinic 1 receptor cortical subtype in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 119: 2–6.

    Article  Google Scholar 

  96. Dean B, Crook JM, Pavey G, Opeskin K, Copolov DL . Muscarinic1 and 2 receptor mRNA in the human caudate-putamen: no change in m1 mRNA in schizophrenia. Mol Psychiatry 2000; 5: 203–207.

    Article  CAS  PubMed  Google Scholar 

  97. Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS et al. In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 2003; 160: 118–127.

    Article  PubMed  Google Scholar 

  98. Raedler TJ, Knable MB, Jones DW, Lafargue T, Urbina RA, Egan MF et al. In vivo olanzapine occupancy of muscarinic acetylcholine receptors in patients with schizophrenia. Neuropsychopharmacology 2000; 23: 56–68.

    Article  CAS  PubMed  Google Scholar 

  99. Lavalaye J, Booij J, Linszen DH, Reneman L, van Royen EA . Higher occupancy of muscarinic receptors by olanzapine than risperidone in patients with schizophrenia. A[123I]-IDEX SPECT study. Psychopharmacology (Berlin) 2001; 156: 53–57.

    Article  CAS  Google Scholar 

  100. Raedler TJ, Knable MB, Jones DW, Urbina RA, Egan MF, Weinberger DR . Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 2003; 28: 1531–1537.

    Article  CAS  PubMed  Google Scholar 

  101. Raedler TJ . Comparison of the in vivo muscarinic cholinergic receptor availability in patients treated with clozapine and olanzapine. Int J Neuropsychopharmacol 2006; doi:10.1017/S1461145706006584.

  102. Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 1996; 14: 87–96.

    Article  CAS  PubMed  Google Scholar 

  103. Nobuhara K, Farde L, Halldin C, Karlsson P, Swahn CG, Olsson H et al. SPET imaging of central muscarinic acetylcholine receptors with iodine-123 labelled E-IQNP and Z-IQNP. Eur J Nucl Med 2001; 28: 13–24.

    Article  CAS  PubMed  Google Scholar 

  104. Jagoda EM, Kiesewetter DO, Shimoji K, Ravasi L, Yamada M, Gomeza J et al. Regional brain uptake of the muscarinic ligand, [18F]FP-TZTP, is greatly decreased in M2 receptor knockout mice but not in M1, M3 and M4 receptor knockout mice. Neuropharmacology 2003; 44: 653–661.

    Article  CAS  PubMed  Google Scholar 

  105. Perry EK, Perry RH . Acetylcholine and hallucinations: disease-related compared to drug-induced alterations in human consciousness. Brain Cogn 1995; 28: 240–258.

    Article  CAS  PubMed  Google Scholar 

  106. Johnstone EC, Crow TJ, Ferrier IN, Frith CD, Owens DGC, Bourne RC et al. Adverse effects of anticholinergic agents on positive symptoms. Psychol Med 1983; 13: 513–527.

    Article  CAS  PubMed  Google Scholar 

  107. Singh MM, Kay SR, Opler LA . Anticholinergic-neuroleptic antagonism in terms of positive and negative symptoms of schizophrenia. Psychol Med 1987; 17: 39–48.

    Article  CAS  PubMed  Google Scholar 

  108. Chouinard G, Annable L, Mercier P, Turnier L . Long-term effects of L-dopa and procyclidin on neuroleptic-induced extrapyramidal and schizophrenic symptoms. Psychopharmacol Bull 1987; 23: 221–226.

    CAS  PubMed  Google Scholar 

  109. Tandon R, Shipley JE, Greden JF, Mann NA, Eisner WH, Goodson J . Muscarinic cholinergic hyperactivity in schizophrenia. Relationship to positive and negative symptoms. Schizophr Res 1991; 4: 23–30.

    Article  CAS  PubMed  Google Scholar 

  110. Tandon R, DeQuardo JR, Goodson J, Mann NA, Greden JF . Effect of anticholinergics on positive and negative symptoms in schizophrenia. Psychopharmacol Bull 1992; 28: 297–302.

    CAS  PubMed  Google Scholar 

  111. Dewey SL, Smith GS, Logan J, Brodie JD, Simkowitz P, MacGregor RR et al. Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects. Proc Natl Acad Sci USA 1993; 90: 11816–11820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zemishlany Z, Aizenberg D, Weiner Z, Weizman A . Trihexyphenidyl (Artane) abuse in schizophrenic patients. Int Clin Psychopharmacol 1996; 11: 199–202.

    Article  CAS  PubMed  Google Scholar 

  113. Zarcone Jr VP, Benson KL, Berger PA . Abnormal rapid eye movement latencies in schizophrenia. Arch Gen Psychiatry 1987; 44: 45–48.

    Article  PubMed  Google Scholar 

  114. Tandon R, Shipley J, Taylor SF, Greden JF, Eiser A, DeQuardo JR et al. Electroencephalographic abnormalities in schizophrenia. Arch Gen Psychiatry 1992; 49: 185–194.

    Article  CAS  PubMed  Google Scholar 

  115. Riemann D, Hohagen F, Krieger S, Gann H, Muller WE, Olbrich R et al. Cholinergic REM induction test: muscarinic supersensitivity underlies polysomnographic findings in both depression and schizophrenia. J Psychiatr Res 1994; 28: 195–210.

    Article  CAS  PubMed  Google Scholar 

  116. Tandon R . Cholinergic aspects of schizophrenia. Br J Psychiatry 1999; 174(Suppl 37): 7–11.

    Article  Google Scholar 

  117. O'Keane V, Abel K, Murray RM . Growth hormone responses to pyridostigmine in schizophrenia: evidence for cholinergic dysfunction. Biol Psychiatry 1994; 36: 582–588.

    Article  CAS  PubMed  Google Scholar 

  118. Tandon R, Greden JF . Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia. Arch Gen Psychiatry 1989; 46: 745–753.

    Article  CAS  PubMed  Google Scholar 

  119. Yeomans JS . Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology 1995; 12: 3–16.

    Article  CAS  PubMed  Google Scholar 

  120. Harvey PD, Keefe RS . Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry 2001; 158: 176–184.

    Article  CAS  PubMed  Google Scholar 

  121. Jibson MD, Tandon R . New atypical antipsychotic medications. J Psychiatr Res 1998; 32: 215–228.

    Article  CAS  PubMed  Google Scholar 

  122. Brebion G, Bressan RA, Amador X, Malaspina D, Gorman JM . Medications and verbal memory impairment in schizophrenia: the role of anticholinergic drugs. Psychol Med 2004; 34: 369–374.

    Article  CAS  PubMed  Google Scholar 

  123. Cummings JL, Cole G . Alzheimer disease. JAMA 2002; 287: 2335–2338.

    Article  CAS  PubMed  Google Scholar 

  124. Friedman JI . Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacology (Berlin) 2004; 174: 45–53.

    Article  CAS  Google Scholar 

  125. Stryjer R, Strous RD, Bar F, Werber E, Shaked G, Buhiri Y et al. Beneficial effect of donepezil augmentation for the management of comorbid schizophrenia and dementia. Clin Neuropharmacol 2003; 26: 12–17.

    Article  CAS  PubMed  Google Scholar 

  126. Stryjer R, Strous R, Bar F, Shaked G, Shiloh R, Rozencwaig S et al. Donepezil augmentation of clozapine monotherapy in schizophrenia patients: a double blind cross-over study. Hum Psychopharmacol 2004; 19: 343–346.

    Article  CAS  PubMed  Google Scholar 

  127. Buchanan RW, Summerfelt A, Tek C, Gold J . An open-labeled trial of adjunctive donepezil for cognitive impairments in patients with schizophrenia. Schizophr Res 2003; 59: 29–33.

    Article  PubMed  Google Scholar 

  128. Erickson SK, Schwarzkopf SB, Palumbo D, Badgley-Fleeman J, Smirnow AM, Light GA . Efficacy and tolerability of low-dose donepezil in schizophrenia. Clin Neuropharmacol 2005; 28: 179–184.

    Article  CAS  PubMed  Google Scholar 

  129. Nahas Z, George MS, Horner MD, Markowitz JS, Li X, Lorberbaum JP et al. Augmenting atypical antipsychotics with a cognitive enhancer (donepezil) improves regional brain activity in schizophrenia patients: a pilot double-blind placebo controlled BOLD fMRI study. Neurocase 2003; 9: 274–282.

    Article  PubMed  Google Scholar 

  130. Caroff S, Campbell E, Havey J, Sullivan KA, Mann SC, Gallop R . Treatment of tardive dyskinesia with donepezil: a pilot study. J Psychiatry 2001; 62: 772–775.

    CAS  Google Scholar 

  131. Friedman JI, Adler DN, Howanitz E, Harvey PD, Brenner G, Temporini H et al. A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 2002; 51: 349–357.

    Article  CAS  PubMed  Google Scholar 

  132. Tugal O, Yazici KM, Yagcioglu AE, Gogus A . A double-blind, placebo controlled, cross-over trial of adjunctive donepezil for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 2004; 7: 117–123.

    Article  CAS  PubMed  Google Scholar 

  133. Freudenreich O, Herz L, Deckersbach T, Evins AE, Henderson DC, Cather C et al. Added donepezil for stable schizophrenia: a double-blind, placebo-controlled trial. Psychopharmacology (Berlin) 2005; 181: 358–363.

    Article  CAS  Google Scholar 

  134. Lenzi A, Maltinti E, Poggi E, Fabrizio L, Coli E . Effects of rivastigmine on cognitive function and quality of life in patients with schizophrenia. Clin Neuropharmacol 2003; 26: 317–321.

    Article  CAS  PubMed  Google Scholar 

  135. Aasen I, Kumari V, Sharma T . Effects of rivastigmine on sustained attention in schizophrenia: an fMRI study. J Clin Psychopharmacol 2005; 25: 311–317.

    Article  CAS  PubMed  Google Scholar 

  136. Sharma T, Reed C, Aasen I, Kumari V . Cognitive effects of adjuctive 24-weeks Rivastigmine treatment to antipsychotics in schizophrenia: A randomized, placebo-controlled, double-blind investigation. Schizophr Res 2006; 85: 73–83.

    Article  PubMed  Google Scholar 

  137. Bora E, Veznedaroğlu B, Kayahan B . The effect of galantamine added to clozapine on cognition of five patients with schizophrenia. Clin Neuropharmacol 2005; 28: 139–141.

    Article  PubMed  Google Scholar 

  138. Sullivan RJ, Allen JS, Otto C, Tiobech J, Nero K . Effects of chewing betel nut (Areca catechu) on the symptoms of people with schizophrenia in Palau, Micronesia. Br J Psychiatry 2000; 177: 174–178.

    Article  CAS  PubMed  Google Scholar 

  139. Mirza NR, Peters D, Sparks RG . Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 2003; 9: 159–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shannon HE, Hart JC, Bymaster FP, Calligaro DO, DeLapp NW, Mitch CH et al. Muscarinic receptor agonists, like dopamine receptor antagonist antipsychotics, inhibit conditioned avoidance response in rats. J Pharmacol Exp Ther 1999; 290: 901–907.

    CAS  PubMed  Google Scholar 

  141. Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, Swedberg MD et al. Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res 2000; 42: 249–259.

    Article  CAS  PubMed  Google Scholar 

  142. Stanhope KJ, Mirza NR, Bickerdike MJ, Bright JL, Harrington NR, Hesselink MB et al. The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther 2001; 299: 782–792.

    CAS  PubMed  Google Scholar 

  143. Andersen MB, Fink-Jensen A, Peacock L, Gerlach J, Bymaster F, Lundbaek JA et al. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys. Neuropsychopharmacology 2003; 28: 1168–1175.

    Article  CAS  PubMed  Google Scholar 

  144. Grant MK, El-Fakahany EE . Persistent binding and functional antagonism by xanomeline at the muscarinic m5 receptor. J Pharmacol Exp Ther 2005; 315: 313–319.

    Article  CAS  PubMed  Google Scholar 

  145. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997; 54: 465–473.

    Article  CAS  PubMed  Google Scholar 

  146. Shekhar A, Potter WZ, Lienemann J, Sundblad K, Lightfoot J, Herrera J et al. Efficacy of xanomeline, a selective muscarinic agonist, in treating schizophrenia: a double-blind, placebo controlled study. Abstract 40th Annual Meeting ACNP, Hawaii, December 9–13, 2001.

  147. Kane JM, Honigfeld G, Singer J, Meltzer HY . Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45: 789–796.

    Article  CAS  PubMed  Google Scholar 

  148. Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY . Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry 1993; 34: 702–712.

    Article  CAS  PubMed  Google Scholar 

  149. Goldberg TE, Weinberger DR . The effects of clozapine on neurocognition: an overview. J Clin Psychiatry 1994; 55(Suppl B): 88–90.

    PubMed  Google Scholar 

  150. Fritze J, Elliger T . Pirenzepine for clozapine-induced hypersalivation. Lancet 1995; 346: 1034.

    Article  CAS  PubMed  Google Scholar 

  151. Schneider B, Weigmann H, Hiemke C, Weber B, Fritze J . Reduction of clozapine-induced hypersalivation by pirenzepine is safe. Pharmacopsychiatry 2004; 37: 43–45.

    Article  CAS  PubMed  Google Scholar 

  152. Tandon R . Effects of atypical antipsychotics on polysomnographic measures in schizophrenia. Bibliotheca Psychiatrica 1997; 167: 219–222.

    Article  Google Scholar 

  153. Tandon R, Kane JM . Neuropharmacological basis of clozapine's mechanism of action. Arch Gen Psychiatry 1993; 50: 157–159.

    Google Scholar 

  154. Zorn SH, Jones SB, Ward KM, Liston DR . Clozapine is a potent and selective muscarinic M4 receptor agonist. Eur J Pharmacol 1994; 269: R1–R2.

    Article  CAS  PubMed  Google Scholar 

  155. Zeng XP, Le F, Richelson E . Muscarinic m4 receptor activation by some atypical antipsychotic drugs. Eur J Pharmacol 1997; 321: 349–354.

    Article  CAS  PubMed  Google Scholar 

  156. Michal P, Lysikova M, El-Fakahany EE, Tucek S . Clozapine interaction with the M2 and M4 subtypes of muscarinic receptors. Eur J Pharmacol 1999; 376: 119–125.

    Article  CAS  PubMed  Google Scholar 

  157. Bymaster FP, Nelson DL, DeLapp NW, Falcone JF, Eckols K, Truex LL et al. Antagonism by olanzapine of dopamine D1, serotonin2, muscarinic, histamine H1 and alpha 1-adrenergic receptors in vitro. Schizophr Res 1999; 37: 107–122.

    Article  CAS  PubMed  Google Scholar 

  158. Olianas MC, Maullu C, Onali P . Effects of clozapine on rat striatal muscarinic receptors coupled to inhibition of adenylyl cyclase activity and on the human cloned m4 receptor. Br J Pharmacol 1997; 122: 401–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meltzer HY, Chai BL, Thompson PA, Yamamoto BK . Effect of scopolamine on the efflux of dopamine and its metabolites after clozapine, haloperidol, or thioridazine. J Pharm Exp Ther 1994; 268: 1452–1461.

    CAS  Google Scholar 

  160. Olianas MC, Maullu C, Onali P . Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Neuropsychopharmacology 1999; 20: 263–270.

    Article  CAS  PubMed  Google Scholar 

  161. Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 2004; 177: 207–216.

    Article  CAS  PubMed  Google Scholar 

  162. Davies MA, Compton-Toth BA, Hufeisen SJ, Meltzer HY, Roth BL . The highly efficacious actions of N-desmethylclozapine at muscarinic receptors are unique and not a common property of either typical or atypical antipsychotic drugs: is M1 agonism a pre-requisite for mimicking clozapine's actions? Psychopharmacology (Berlin) 2005; 178: 451–460.

    Article  CAS  Google Scholar 

  163. Burstein ES, Ma JN, Wong S, Gao Y, Pham E, Knapp AE et al. Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther 2005; 15: 1272–1278.

    Google Scholar 

  164. Li Z, Huang M, Ichikawa J, Dai J, Meltzer HY . N-desmethylclozapine, a major metabolite of clozapine, increases cortical acetylcholine and dopamine release in vivo via stimulation of M(1) muscarinic receptors. Neuropsychopharmacology 2005; 30: 1986–1995.

    Article  CAS  PubMed  Google Scholar 

  165. Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA 2003; 100: 13674–13679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ichikawa J, Dai J, O'Laughlin IA, Fowler WL, Meltzer HY . Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 2002; 26: 325–339.

    Article  CAS  PubMed  Google Scholar 

  167. Chung YC, Li Z, Dai J, Meltzer HY, Ichikawa J . Clozapine increases both acetylcholine and dopamine release in rat ventral hippocampus: role of 5-HT1A receptor agonism. Brain Res 2004; 1023: 54–63.

    Article  CAS  PubMed  Google Scholar 

  168. Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV . Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berlin) 2004; 174: 3–16.

    Article  CAS  Google Scholar 

  169. Perry KW, Nisenbaum LK, George CA, Shannon HE, Felder CC, Bymaster FP . The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex. Biol Psychiatry 2001; 49: 716–725.

    Article  CAS  PubMed  Google Scholar 

  170. Di Chiara G, Morelli M, Consolo S . Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 1994; 17: 228–233.

    Article  CAS  PubMed  Google Scholar 

  171. Kaneko S, Hikida T, Watanabe D, Ichinose H, Nagatsu T, Kreitman RJ et al. Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 2000; 289: 633–637.

    Article  CAS  PubMed  Google Scholar 

  172. Zhou F-M, Wilson C, Dani JA . Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist 2003; 9: 23–36.

    Article  CAS  PubMed  Google Scholar 

  173. Fahn S, Burke R, Stern Y . Antimuscarinic drugs in the treatment of movement disorders. Prog Brain Res 1990; 84: 389–397.

    Article  CAS  PubMed  Google Scholar 

  174. Sugita S, Uchimura N, Jiang ZG, North RA . Distinct muscarinic receptors inhibit release of γ-aminobutyric acid and excitatory amino acids in mammalian brain. Proc Natl Acad Sci USA 1991; 88: 2608–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bolam JP, Francis CM, Henderson Z . Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 1991; 41: 483–494.

    Article  CAS  PubMed  Google Scholar 

  176. De Klippel N, Sarre S, Ebinger G, Michotte Y . Effect of M1- and M2-muscarinic drugs on striatal dopamine release and metabolism: an in vivo microdialysis study comparing normal and 6-hydroxydopamine-lesioned rats. Brain Res 1993; 630: 57–64.

    Article  CAS  PubMed  Google Scholar 

  177. Gronier B, Rasmussen K . Activation of midbrain presumed dopaminergic neurones by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat. Br J Pharmacol 1998; 124: 455–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Weiner DM, Levey AI, Brann MR . Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 1990; 87: 7050–7054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gronier B, Perry KW, Rasmussen K . Activation of the mesocorticolimbic dopaminergic system by stimulation of muscarinic cholinergic receptors in the ventral tegmental area. Psychopharmacology (Berlin) 2000; 147: 347–355.

    Article  CAS  Google Scholar 

  180. Lehmann J, Langer SZ . Muscarinic receptors on dopamine terminals in the cat caudate nucleus: neuromodulation of [3H]dopamine release in vitro by endogenous acetylcholine. Brain Res 1982; 248: 61–69.

    Article  CAS  PubMed  Google Scholar 

  181. Gronier B, Rasmussen K . Pertussis toxin treatment differentially affects cholinergic and dopaminergic receptor stimulation of midbrain dopaminergic neurons. Neuropharmacology 1999; 38: 1903–1912.

    Article  CAS  PubMed  Google Scholar 

  182. Fiorillo CD, Williams JT . Cholinergic inhibition of ventral midbrain dopamine neurons. J Neurosci 2000; 20: 7855–7860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ichikawa J, Chung Y-C, Li Z, Dai J, Meltzer HY . Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002; 958: 176–184.

    Article  CAS  PubMed  Google Scholar 

  184. Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S . Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 2001; 98: 15312–15317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 2004; 18: 1410–1412.

    Article  CAS  PubMed  Google Scholar 

  186. Bymaster FP, Shannon HE, Rasmussen K, Delapp NW, Mitch CH, Ward JS et al. Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane. Eur J Pharmacol 1998; 356: 109–119.

    Article  CAS  PubMed  Google Scholar 

  187. Rasmussen T, Fink-Jensen A, Sauerberg P, Swedberg MD, Thomsen C, Sheardown MJ et al. The muscarinic receptor agonist BuTAC, a novel potential antipsychotic, does not impair learning and memory in mouse passive avoidance. Schizophr Res 2001; 49: 193–201.

    Article  CAS  PubMed  Google Scholar 

  188. Jones CK, Shannon HE . Muscarinic cholinergic modulation of prepulse inhibition of the acoustic startle reflex. J Pharmacol Exp Ther 2000; 294: 1017–1023.

    CAS  PubMed  Google Scholar 

  189. Swerdlow NR, Braff DL, Taaid N, Geyer MA . Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 1994; 51: 139–154.

    Article  CAS  PubMed  Google Scholar 

  190. Jones CK, Eberle EL, Shaw DB, McKinzie DL, Shannon HE . Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J Pharmacol Exp Ther 2005; 312: 1055–1063.

    Article  CAS  PubMed  Google Scholar 

  191. Sarter M, Nelson CL, Bruno JP . Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 2005; 31: 117–138.

    Article  PubMed  Google Scholar 

  192. Laplante F, Nakagawasai O, Srivastava LK, Quirion R . Alterations in behavioral responses to a cholinergic agonist in post-pubertal rats with neonatal ventral hippocampal lesions: relationship to changes in muscarinic receptor levels. Neuropsychopharmacology 2005; 30: 1076–1087.

    Article  CAS  PubMed  Google Scholar 

  193. Borda T, Perez Rivera R, Joensen L, Gomez RM, Sterin-Borda L . Antibodies against cerebral M1 cholinergic muscarinic receptor from schizophrenic patients: molecular interaction. J Immunol 2002; 168: 3667–3674.

    Article  CAS  PubMed  Google Scholar 

  194. Tanaka S, Matsunaga H, Kimara M, Tatsumi K, Hidaka Y, Takano T et al. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol 2003; 141: 155–164.

    Article  CAS  PubMed  Google Scholar 

  195. Borda T, Gomez R, Berria MI, Sterin-Borda L . Antibodies against astrocyte M1 and M2 muscarinic cholinoceptor from schizophrenic patients' sera. Glia 2004; 45: 144–154.

    Article  PubMed  Google Scholar 

  196. Ganzinelli S, Borda T, Sterin-Borda L . Regulation of m1 muscarinic receptors and nNOS mRNA levels by autoantibodies from schizophrenic patients. Neuropharmacology 2006; 50: 362–371.

    Article  CAS  PubMed  Google Scholar 

  197. Scolnick EM . Mechanisms of action of medicines for schizophrenia and bipolar illness: status and limitations. Biol Psychiatry 2006; 59: 1039–1145.

    Article  CAS  PubMed  Google Scholar 

  198. Leonard S, Freedman R . Genetics of chromosome 15q13–q14 in schizophrenia. Biol Psychiatry 2006; 60: 115–122.

    Article  CAS  PubMed  Google Scholar 

  199. De Luca V, Wang H, Squassina A, Wong GW, Yeomans J, Kennedy JL . Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology 2004; 50: 124–127.

    Article  CAS  PubMed  Google Scholar 

  200. Liao DL, Hong CJ, Chen HM, Chen YE, Lee SM, Chang CY et al. Association of muscarinic m1 receptor genetic polymorphisms with psychiatric symptoms and cognitive function in schizophrenic patients. Neuropsychobiology 2003; 48: 72–76.

    Article  CAS  PubMed  Google Scholar 

  201. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Raedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raedler, T., Bymaster, F., Tandon, R. et al. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12, 232–246 (2007). https://doi.org/10.1038/sj.mp.4001924

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001924

Keywords

This article is cited by

Search

Quick links