Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex

Abstract

The enzymes that regulate the brain arachidonic acid (AA) cascade have been implicated in bipolar disorder and neuroinflammation. Fifteen weeks of dietary n-3 polyunsaturated fatty acid (PUFA) deprivation in rats decreases the concentration of docosahexaenoic acid (DHA) and increases its half-life within the brain. Based on this, we hypothesized that such dietary deprivation would decrease expression of enzymes responsible for the metabolic loss of DHA while increasing expression of those responsible for the metabolism of AA. Fifteen weeks of n-3 PUFA deprivation significantly decreased the activity, protein and mRNA expression of the DHA regulatory phospholipase A2 (PLA2), calcium-independent iPLA2, in rat frontal cortex. In contrast the activities, protein and mRNA levels of the AA selective calcium-dependent cytosolic phospholipase (cPLA2) and secretory sPLA2 were increased. Cyclooxygenase (COX)-1 protein but not mRNA was decreased in the n-3 PUFA-deprived rats whereas COX-2 protein and mRNA were increased. This study suggests that n-3 PUFA deprivation increases the half-live of brain DHA by downregulating iPLA2. The finding that n-3 PUFA deprivation increases cPLA2, sPLA2 and COX-2 is opposite to what has been reported after chronic administration of anti-manic agents to rats and suggests that n-3 PUFA deprivation may increase susceptibility to bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

cPLA2:

calcium-dependent phospholipase A2

COX-1:

cyclooxygenase-1

COX-2:

cyclooxygenase-2

DHA:

docosahexaenoic acid

iPLA2:

calcium-independent phospholipase A2

sPLA2:

secretory phospholipase A2

PG:

prostaglandin

References

  1. Diau GY, Hsieh AT, Sarkadi-Nagy EA, Wijendran V, Nathanielsz PW, Brenna JT . The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system. BMC Med 2005; 3: 11.

    PubMed  PubMed Central  Google Scholar 

  2. Salem Jr N, Wegher B, Mena P, Uauy R . Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 1996; 93: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen C, Bazan NG . Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat 2005; 77: 65–76.

    Article  CAS  PubMed  Google Scholar 

  4. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003; 278: 43807–43817.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN et al. Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 2004; 88: 1168–1178.

    Article  CAS  PubMed  Google Scholar 

  6. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E et al. Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 1999; 56: 407–412.

    Article  CAS  PubMed  Google Scholar 

  7. Rapoport SI, Bosetti F . Do lithium and anticonvulsants target the brain arachidonic acid cascade in bipolar disorder? Arch Gen Psychiatry 2002; 59: 592–596.

    Article  CAS  PubMed  Google Scholar 

  8. Farooqui AA, Horrocks LA, Farooqui T . Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 2000; 14: 123–135.

    Article  CAS  PubMed  Google Scholar 

  9. Jump DB . The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 2002; 277: 8755–8758.

    Article  CAS  PubMed  Google Scholar 

  10. DeMar Jr JC, Ma K, Bell JM, Rapoport SI . Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J Neurochem 2004; 91: 1125–1137.

    Article  CAS  PubMed  Google Scholar 

  11. Strokin M, Sergeeva M, Reiser G . Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 2003; 139: 1014–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strokin M, Sergeeva M, Reiser G . Role of Ca2+-independent phospholipase A2 and n-3 polyunsaturated fatty acid docosahexaenoic acid in prostanoid production in brain: perspectives for protection in neuroinflammation. Int J Dev Neurosci 2004; 22: 551–557.

    Article  CAS  PubMed  Google Scholar 

  13. Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA . Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem 1999; 269: 278–288.

    Article  CAS  PubMed  Google Scholar 

  14. Yang HC, Mosior M, Ni B, Dennis EA . Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J Neurochem 1999; 73: 1278–1287.

    Article  CAS  PubMed  Google Scholar 

  15. Contreras MA, Rapoport SI . Recent studies on interactions between n-3 and n-6 polyunsaturated fatty acids in brain and other tissues. Curr Opin Lipidol 2002; 13: 267–272.

    Article  CAS  PubMed  Google Scholar 

  16. Kuwata H, Yamamoto S, Miyazaki Y, Shimbara S, Nakatani Y, Suzuki H et al. Studies on a mechanism by which cytosolic phospholipase A2 regulates the expression and function of type IIA secretory phospholipase A2. J Immunol 2000; 165: 4024–4031.

    Article  CAS  PubMed  Google Scholar 

  17. Balsinde J, Balboa MA, Dennis EA . Functional coupling between secretory phospholipase A2 and cyclooxygenase-2 and its regulation by cytosolic group IV phospholipase A2. Proc Natl Acad Sci USA 1998; 95: 7951–7956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huwiler A, Staudt G, Kramer RM, Pfeilschifter J . Cross-talk between secretory phospholipase A2 and cytosolic phospholipase A2 in rat renal mesangial cells. Biochim Biophys Acta 1997; 1348: 257–272.

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez M, Burillo SL, Crespo MS, Nieto ML . Secretory phospholipase A2 activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. J Biol Chem 1998; 273: 606–612.

    Article  CAS  PubMed  Google Scholar 

  20. Yuan CJ, Mandal AK, Zhang Z, Mukherjee AB . Transcriptional regulation of cyclooxygenase-2 gene expression: novel effects of nonsteroidal anti-inflammatory drugs. Cancer Res 2000; 60: 1084–1091.

    CAS  PubMed  Google Scholar 

  21. Bosetti F, Weerasinghe GR . The expression of brain cyclooxygenase-2 is down-regulated in the cytosolic phospholipase A2 knockout mouse. J Neurochem 2003; 87: 1471–1477.

    Article  CAS  PubMed  Google Scholar 

  22. Murakami M, Kambe T, Shimbara S, Kudo I . Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 1999; 274: 3103–3115.

    Article  CAS  PubMed  Google Scholar 

  23. DeMar Jr JC, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI . One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 2006; 47: 172–180.

    Article  CAS  PubMed  Google Scholar 

  24. Rajkowska G . Cell pathology in bipolar disorder. Bipolar Disord 2002; 4: 105–116.

    Article  PubMed  Google Scholar 

  25. Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR et al. Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 2004; 55: 648–651.

    Article  PubMed  Google Scholar 

  26. Soares JC, Kochunov P, Monkul ES, Nicoletti MA, Brambilla P, Sassi RB et al. Structural brain changes in bipolar disorder using deformation field morphometry. Neuroreport 2005; 16: 541–544.

    Article  PubMed  Google Scholar 

  27. Rao JS, Bazinet RP, Rapoport SI, Lee HJ . Chronic administration of carbamazepine downregulates AP-2 DNA binding activity and AP-2α protein expression in rat frontal cortex. Biol Psychiatry, 23 June 2006 [Epub ahead of print].

  28. Rao JS, Bazinet RP, Rapoport SI, Lee HJ . Chronic Treatment of Rats with Sodium Valproate Downregulates Frontal Cortex NF-κB DNA Binding Activity and COX-2 mRNA. Bipolar Disord 2006, in press.

  29. Rao JS, Ertley RN, Lee HJ, Rapoport SI, Bazinet RP . Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J, 25 April 2006 [Epub ahead of print].

  30. Rao JS, Rapoport SI, Bosetti F . Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 2005; 30: 2006–2013.

    Article  CAS  PubMed  Google Scholar 

  31. Moriguchi T, Loewke J, Garrison M, Catalan JN, Salem Jr N . Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J Lipid Res 2001; 42: 419–427.

    CAS  PubMed  Google Scholar 

  32. Folch J, Lees M, Sloane Stanley GH . A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226: 497–509.

    CAS  PubMed  Google Scholar 

  33. Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA . Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 1994; 60: 189–194.

    Article  CAS  PubMed  Google Scholar 

  34. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berlin) 2005; 182: 180–185.

    Article  CAS  Google Scholar 

  35. Lahiri DK . An region upstream of the gene promoter for the beta-amyloid precursor protein interacts with proteins from nuclear extracts of the human brain and PC12 cells. Brain Res Mol Brain Res 1998; 58: 112–122.

    Article  CAS  PubMed  Google Scholar 

  36. Lucas KK, Dennis EA . Distinguishing phospholipase A2 types in biological samples by employing group-specific assays in the presence of inhibitors. Prostaglandins Other Lipid Mediat 2005; 77: 235–248.

    Article  CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  38. Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F . Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 2004; 56: 248–254.

    Article  CAS  PubMed  Google Scholar 

  39. Cole GM, Lim GP, Yang F, Teter B, Begum A, Ma Q et al. Prevention of Alzheimer's disease: Omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol Aging 2005; 26 (Suppl 1): 133–136.

    Article  PubMed  Google Scholar 

  40. Shikano M, Masuzawa Y, Yazawa K, Takayama K, Kudo I, Inoue K . Complete discrimination of docosahexaenoate from arachidonate by 85 kDa cytosolic phospholipase A2 during the hydrolysis of diacyl- and alkenylacylglycerophosphoethanolamine. Biochim Biophys Acta 1994; 1212: 211–216.

    Article  CAS  PubMed  Google Scholar 

  41. Rivest S . What is the cellular source of prostaglandins in the brain in response to systemic inflammation? Facts and controversies. Mol Psychiatry 1999; 4: 500–507.

    Article  PubMed  Google Scholar 

  42. Yamamoto Y, Yin MJ, Lin KM, Gaynor RB . Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem 1999; 274: 27307–27314.

    Article  CAS  PubMed  Google Scholar 

  43. Morri H, Ozaki M, Watanabe Y . 5′-flanking region surrounding a human cytosolic phospholipase A2 gene. Biochem Biophys Res Commun 1994; 205: 6–11.

    Article  CAS  PubMed  Google Scholar 

  44. Schley PD, Jijon HB, Robinson LE, Field CJ . Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 2005; 92: 187–195.

    Article  CAS  PubMed  Google Scholar 

  45. Denys A, Hichami A, Khan NA . n-3 PUFAs modulate T-cell activation via protein kinase C-alpha and -epsilon and the NF-kappaB signaling pathway. J Lipid Res 2005; 46: 752–758.

    Article  CAS  PubMed  Google Scholar 

  46. Narayanan BA, Narayanan NK, Reddy BS . Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol 2001; 19: 1255–1262.

    CAS  PubMed  Google Scholar 

  47. Murakami M, Kuwata H, Amakasu Y, Shimbara S, Nakatani Y, Atsumi G et al. Prostaglandin E2 amplifies cytosolic phospholipase A2- and cyclooxygenase-2-dependent delayed prostaglandin E2 generation in mouse osteoblastic cells. Enhancement by secretory phospholipase A2. J Biol Chem 1997; 272: 19891–19897.

    Article  CAS  PubMed  Google Scholar 

  48. Shinohara H, Balboa MA, Johnson CA, Balsinde J, Dennis EA . Regulation of delayed prostaglandin production in activated P388D1 macrophages by group IV cytosolic and group V secretory phospholipase A2s. J Biol Chem 1999; 274: 12263–12268.

    Article  CAS  PubMed  Google Scholar 

  49. Noaghiul S, Hibbeln JR . Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am J Psychiatry 2003; 160: 2222–2227.

    Article  PubMed  Google Scholar 

  50. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: relevance to bipolar disorder. Biol Psychiatry 2006; 59: 401–407.

    Article  CAS  PubMed  Google Scholar 

  51. Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E . Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 1999; 24: 399–406.

    Article  CAS  PubMed  Google Scholar 

  52. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI . Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 2001; 77: 796–803.

    Article  CAS  PubMed  Google Scholar 

  53. Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI . Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 1996; 220: 171–174.

    Article  CAS  PubMed  Google Scholar 

  54. Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA et al. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 1999; 10: 3887–3890.

    Article  CAS  PubMed  Google Scholar 

  55. Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA . Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by brain microsomal long-chain fatty acyl-CoA synthetases: relevance to bipolar disorder. Psychopharmacology (Berlin) 2006; 184: 122–129.

    Article  CAS  Google Scholar 

  56. Bosetti F, Rintala J, Seemann R, Rosenberger TA, Contreras MA, Rapoport SI et al. Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 2002; 7: 845–850.

    Article  CAS  PubMed  Google Scholar 

  57. Bosetti F, Weerasinghe GR, Rosenberger TA, Rapoport SI . Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 2003; 85: 690–696.

    Article  CAS  PubMed  Google Scholar 

  58. Sapirstein A, Saito H, Texel SJ, Samad TA, O'Leary E, Bonventre JV . Cytosolic phospholipase A2alpha regulates induction of brain cyclooxygenase-2 in a mouse model of inflammation. Am J Physiol Regul Integr Comp Physiol 2005; 288: R1774–R1782.

    Article  CAS  PubMed  Google Scholar 

  59. Denkins Y, Kempf D, Ferniz M, Nileshwar S, Marchetti D . Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. J Lipid Res 2005; 46: 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  60. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 2002; 196: 1025–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Funk CD . Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871–1875.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, J., Ertley, R., DeMar, J. et al. Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry 12, 151–157 (2007). https://doi.org/10.1038/sj.mp.4001887

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001887

Keywords

This article is cited by

Search

Quick links