Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index

Abstract

Variation in brain monoaminergic activity is heritable and modulates risk of alcoholism and other addictions, as well as food intake and energy expenditure. Monoamine oxidase A deaminates the monoamine neurotransmitters serotonin, dopamine (DA), and noradrenalin. The monoamine oxidase A (MAOA) gene (Xp11.5) contains a length polymorphism in its promoter region (MAOA-LPR) that putatively affects transcriptional efficiency. Our goals were to test (1) whether MAOA-LPR contributes to interindividual variation in monoamine activity, assessed using levels of cerebrospinal fluid (CSF) monoamine metabolites; and (2) whether MAOA-LPR genotype influences alcoholism and/or body mass index (BMI). Male, unrelated criminal alcoholics (N=278) and controls (N=227) were collected from a homogeneous Finnish source population. CSF concentration of 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) were available from 208 participants. Single allele, hemizygous genotypes were grouped according to inferred effect of the MAOA alleles on transcriptional activity. MAOA-LPR genotypes had a significant effect on CSF HVA concentration (P=0.01) but explained only 3% of the total variance. There was a detectable but nonsignificant genotype effect on 5-HIAA and no effects on MHPG. Specifically, the genotype conferring high MAOA activity was associated with lower HVA levels in both alcoholics and controls, a finding that persisted after accounting for the potential confounds of alcoholism, BMI, height, and smoking. MAOA-LPR genotype predicted BMI (P<0.005), with the high-activity genotype being associated with lower BMI. MAOA-LPR genotypes were not associated with alcoholism or related psychiatric phenotypes in this data set. Our results suggest that MAOA-LPR allelic variation modulates DA turnover in the CNS, but does so in a manner contrary to our prior expectation that alleles conferring high activity would predict higher HVA levels in CSF. Our results are consistent with an emerging literature that suggests greater complexity in how variation in MAOA expression alters monoaminergic function. Finally, our work suggests that MAOA may be involved in the regulation of BMI. Independent samples are necessary to confirm this preliminary finding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Iurlo M, Leone G, Schilstrom B, Linner L, Nomikos G, Hertel P et al. Effects of harmine on dopamine output and metabolism in rat striatum: role of monoamine oxidase-A inhibition. Psychopharmacology (Berl) 2001; 159: 98–104.

    Article  CAS  Google Scholar 

  2. Lakshmana MK, Rao BS, Dhingra NK, Ravikumar R, Govindaiah G, Sudha S et al. Role of monoamine oxidase type A and B on the dopamine metabolism in discrete regions of the primate brain. Neurochem Res 1998; 23: 1031–1037.

    Article  CAS  Google Scholar 

  3. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995; 268: 1763–1766.

    Article  CAS  Google Scholar 

  4. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA . Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262: 578–580.

    Article  CAS  Google Scholar 

  5. Schmidt LG, Sander T, Kuhn S, Smolka M, Rommelspacher H, Samochowiec J et al. Different allele distribution of a regulatory MAOA gene promoter polymorphism in antisocial and anxious-depressive alcoholics. J Neural Transm 2000; 107: 681–689.

    Article  CAS  Google Scholar 

  6. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851–854.

    Article  CAS  Google Scholar 

  7. Samochowiec J, Lesch KP, Rottmann M, Smolka M, Syagailo YV, Okladnova O et al. Association of a regulatory polymorphism in the promoter region of the monoamine oxidase A gene with antisocial alcoholism. Psychiatry Res 1999; 86: 67–72.

    Article  CAS  Google Scholar 

  8. Saito T, Lachman HM, Diaz L, Hallikainen T, Kauhanen J, Salonen JT et al. Analysis of monoamine oxidase A (MAOA) promoter polymorphism in Finnish male alcoholics. Psychiatry Res 2002; 109: 113–119.

    Article  CAS  Google Scholar 

  9. Lawson DC, Turic D, Langley K, Pay HM, Govan CF, Norton N et al. Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2003; 116: 84–89.

    Article  Google Scholar 

  10. Jacob CP, Muller J, Schmidt M, Hohenberger K, Gutknecht L, Reif A et al. Cluster B personality disorders are associated with allelic variation of monoamine oxidase A activity. Neuropsychopharmacology 2005; 30: 1711–1718.

    Article  CAS  Google Scholar 

  11. Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC et al. X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 1993; 52: 1032–1039.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Sabol SZ, Hu S, Hamer D . A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 1998; 103: 273–279.

    Article  CAS  Google Scholar 

  13. Denney RM, Koch H, Craig IW . Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum Genet 1999; 105: 542–551.

    PubMed  CAS  Google Scholar 

  14. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 1999; 8: 621–624.

    Article  CAS  Google Scholar 

  15. Koller G, Bondy B, Preuss UW, Bottlender M, Soyka M . No association between a polymorphism in the promoter region of the MAOA gene with antisocial personality traits in alcoholics. Alcohol Alcohol 2003; 38: 31–34.

    Article  CAS  Google Scholar 

  16. Manor I, Tyano S, Mel E, Eisenberg J, Bachner-Melman R, Kotler M et al. Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA). Mol Psychiatry 2002; 7: 626–632.

    Article  CAS  Google Scholar 

  17. Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF . A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 2000; 95: 9–23.

    Article  CAS  Google Scholar 

  18. Foley DL, Eaves LJ, Wormley B, Silberg JL, Maes HH, Kuhn J et al. Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Arch Gen Psychiatry 2004; 61: 738–744.

    Article  CAS  Google Scholar 

  19. Huang YY, Cate SP, Battistuzzi C, Oquendo MA, Brent D, Mann JJ . An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 2004; 29: 1498–1505.

    Article  CAS  Google Scholar 

  20. Newman TK, Syagailo YV, Barr CS, Wendland JR, Champoux M, Graessle M et al. Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biol Psychiatry 2005; 57: 167–172.

    Article  CAS  Google Scholar 

  21. Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF . Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1979; 1: 131–139.

    Article  CAS  Google Scholar 

  22. Virkkunen M, Eggert M, Rawlings R, Linnoila M . A prospective follow-up study of alcoholic violent offenders and fire setters. Arch Gen Psychiatry 1996; 53: 523–529.

    Article  CAS  Google Scholar 

  23. Roy A, Agren H, Pickar D, Linnoila M, Doran AR, Cutler NR et al. Reduced CSF concentrations of homovanillic acid and homovanillic acid to 5-hydroxyindoleacetic acid ratios in depressed patients: relationship to suicidal behavior and dexamethasone nonsuppression. Am J Psychiatry 1986; 143: 1539–1545.

    Article  CAS  Google Scholar 

  24. Placidi GP, Oquendo MA, Malone KM, Huang YY, Ellis SP, Mann JJ . Aggressivity, suicide attempts, and depression: relationship to cerebrospinal fluid monoamine metabolite levels. Biol Psychiatry 2001; 50: 783–791.

    Article  CAS  Google Scholar 

  25. Brown GL, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, Bunney WE et al. Aggression, suicide, and serotonin: relationships to CSF amine metabolites. Am J Psychiatry 1982; 139: 741–746.

    Article  CAS  Google Scholar 

  26. Oxenstierna G, Edman G, Iselius L, Oreland L, Ross SB, Sedvall G . Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals – a genetic study. J Psychiatr Res 1986; 20: 19–29.

    Article  CAS  Google Scholar 

  27. Higley JD, Thompson WW, Champoux M, Goldman D, Hasert MF, Kraemer GW et al. Paternal and maternal genetic and environmental contributions to cerebrospinal fluid monoamine metabolites in rhesus monkeys (Macaca mulatta). Arch Gen Psychiatry 1993; 50: 615–623.

    Article  CAS  Google Scholar 

  28. Rogers J, Martin LJ, Comuzzie AG, Mann JJ, Manuck SB, Leland M et al. Genetics of monoamine metabolites in baboons: overlapping sets of genes influence levels of 5-hydroxyindolacetic acid, 3-hydroxy-4-methoxyphenylglycol, and homovanillic acid. Biol Psychiatry 2004; 55: 739–744.

    Article  CAS  Google Scholar 

  29. Williams RB, Marchuk DA, Gadde KM, Barefoot JC, Grichnik K, Helms MJ et al. Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology 2003; 28: 533–541.

    Article  CAS  Google Scholar 

  30. Jonsson EG, Norton N, Gustavsson JP, Oreland L, Owen MJ, Sedvall GC . A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 2000; 34: 239–244.

    Article  CAS  Google Scholar 

  31. Zalsman G, Huang YY, Harkavy-Friedman JM, Oquendo MA, Ellis SP, Mann JJ . Relationship of MAO-A promoter (u-VNTR) and COMT (V158 M) gene polymorphisms to CSF monoamine metabolites levels in a psychiatric sample of caucasians: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 100–103.

    Article  Google Scholar 

  32. Ramos EJ, Meguid MM, Campos AC, Coelho JC . Neuropeptide Y, alpha-melanocyte-stimulating hormone, and monoamines in food intake regulation. Nutrition 2005; 21: 269–279.

    Article  CAS  Google Scholar 

  33. McElroy SL, Kotwal R, Malhotra S, Nelson EB, Keck PE, Nemeroff CB . Are mood disorders and obesity related? A review for the mental health professional. J Clin Psychiatry 2004; 65: 634–651, quiz 730.

    Article  Google Scholar 

  34. Kaye WH, Greeno CG, Moss H, Fernstrom J, Fernstrom M, Lilenfeld LR et al. Alterations in serotonin activity and psychiatric symptoms after recovery from bulimia nervosa. Arch Gen Psychiatry 1998; 55: 927–935.

    Article  CAS  Google Scholar 

  35. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  Google Scholar 

  36. Wang GJ, Volkow ND, Thanos PK, Fowler JS . Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 2004; 23: 39–53.

    Article  Google Scholar 

  37. Price RA, Li WD, Kilker R . An X-chromosome scan reveals a locus for fat distribution in chromosome region Xp21–22. Diabetes 2002; 51: 1989–1991.

    Article  CAS  Google Scholar 

  38. Camarena B, Santiago H, Aguilar A, Ruvinskis E, Gonzalez-Barranco J, Nicolini H . Family-based association study between the monoamine oxidase A gene and obesity: implications for psychopharmacogenetic studies. Neuropsychobiology 2004; 49: 126–129.

    Article  CAS  Google Scholar 

  39. Fava M . Weight gain and antidepressants. J Clin Psychiatry 2000; 61 (Suppl 11): 37–41.

    PubMed  CAS  Google Scholar 

  40. Scheinin M, Chang WH, Kirk KL, Linnoila M . Simultaneous determination of 3-methoxy-4-hydroxyphenylglycol, 5-hydroxyindoleacetic acid, and homovanillic acid in cerebrospinal fluid with high-performance liquid chromatography using electrochemical detection. Anal Biochem 1983; 131: 246–253.

    Article  CAS  Google Scholar 

  41. Berlin I, Anthenelli RM . Monoamine oxidases and tobacco smoking. Int J Neuropsychopharmacol 2001; 4: 33–42.

    Article  CAS  Google Scholar 

  42. Lappalainen J, Long JC, Virkkunen M, Ozaki N, Goldman D, Linnoila M . HTR2C Cys23Ser polymorphism in relation to CSF monoamine metabolite concentrations and DSM-III-R psychiatric diagnoses. Biol Psychiatry 1999; 46: 821–826.

    Article  CAS  Google Scholar 

  43. Malone KM, Waternaux C, Haas GL, Cooper TB, Li S, Mann JJ . Cigarette smoking, suicidal behavior, and serotonin function in major psychiatric disorders. Am J Psychiatry 2003; 160: 773–779.

    Article  Google Scholar 

  44. Finberg JP, Pacak K, Goldstein DS, Kopin IJ . Modification of cerebral cortical noradrenaline release by chronic inhibition of MAO-A. J Neural Transm Suppl 1994; 41: 123–125.

    PubMed  CAS  Google Scholar 

  45. Grimsby J, Lan NC, Neve R, Chen K, Shih JC . Tissue distribution of human monoamine oxidase A and B mRNA. J Neurochem 1990; 55: 1166–1169.

    Article  CAS  Google Scholar 

  46. Stenstrom A, Hardy J, Oreland L . Intra- and extra-dopamine-synaptosomal localization of monoamine oxidase in striatal homogenates from four species. Biochem Pharmacol 1987; 36: 2931–2935.

    Article  CAS  Google Scholar 

  47. Kitahama K, Denney RM, Maeda T, Jouvet M . Distribution of type B monoamine oxidase immunoreactivity in the cat brain with reference to enzyme histochemistry. Neuroscience 1991; 44: 185–204.

    Article  CAS  Google Scholar 

  48. Jansson M, McCarthy S, Sullivan PF, Dickman P, Andersson B, Oreland L et al. MAOA haplotypes associated with thrombocyte-MAO activity. BMC Genet 2005; 6: 46.

    Article  CAS  Google Scholar 

  49. Balciuniene J, Emilsson L, Oreland L, Pettersson U, Jazin E . Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet 2002; 110: 1–7.

    Article  CAS  Google Scholar 

  50. Urwin RE, Nunn KP . Epistatic interaction between the monoamine oxidase A and serotonin transporter genes in anorexia nervosa. Eur J Hum Genet 2005; 13: 370–375.

    Article  CAS  Google Scholar 

  51. Virkkunen M, Goldman D, Nielsen DA, Linnoila M . Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence. J Psychiatry Neurosci 1995; 20: 271–275.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Ducci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducci, F., Newman, T., Funt, S. et al. A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index. Mol Psychiatry 11, 858–866 (2006). https://doi.org/10.1038/sj.mp.4001856

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001856

Keywords

This article is cited by

Search

Quick links