Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma

Abstract

Despite the use of modern immunochemotherapy regimens, almost 50% of patients with diffuse large-B-cell lymphoma will relapse. Current prognostic models, including the International Prognostic Index, incorporate patient and tumor characteristics. In contrast, recent observations show that variables related to host adaptive immunity and the tumor microenvironment are significant prognostic variables in non-Hodgkin lymphoma. Therefore, we retrospectively examined the absolute monocyte and lymphocyte counts as prognostic variables in a cohort of 366 diffuse large-B-cell lymphoma patients who were treated between 1993 and 2007 and followed at a single institution. The absolute monocyte and lymphocyte counts in univariate analysis predicted progression-free and overall survival when analyzed as continuous and dichotomized variables. On multivariate analysis performed with factors included in the IPI, the absolute monocyte and lymphocyte counts remained independent predictors of progression-free and overall survival. Therefore, the absolute monocyte and lymphocyte counts were combined to generate a prognostic score that identified patients with an especially poor overall survival. This prognostic score was independent of the IPI and added to its ability to identify high-risk patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sehn LH, Berry B, Chhanabhai M, Fitzgerald C, Gill K, Hoskins P et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood 2007; 109: 1857–1861.

    Article  CAS  PubMed  Google Scholar 

  2. Ziepert M, Hasenclever D, Kuhnt E, Glass B, Schmitz N, Pfreundschuh M et al. Standard International Prognostic Index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin Oncol 2010; 28: 2373–2380.

    Article  CAS  PubMed  Google Scholar 

  3. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    Article  CAS  PubMed  Google Scholar 

  4. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  5. Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 2004; 350: 1828–1837.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

  7. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  8. Hermine O, Haioun C, Lepage E, d'Agay MF, Briere J, Lavignac C et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Adulte (GELA). Blood 1996; 87: 265–272.

    CAS  PubMed  Google Scholar 

  9. Mounier N, Briere J, Gisselbrecht C, Emile JF, Lederlin P, Sebban C et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2-associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood 2003; 101: 4279–4284.

    Article  CAS  PubMed  Google Scholar 

  10. Ansell SM, Stenson M, Habermann TM, Jelinek DF, Witzig TE . Cd4+ T-cell immune response to large B-cell non-Hodgkin's lymphoma predicts patient outcome. J Clin Oncol 2001; 19: 720–726.

    Article  CAS  PubMed  Google Scholar 

  11. Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S . Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica 2008; 93: 193–200.

    Article  CAS  PubMed  Google Scholar 

  12. Lee NR, Song EK, Jang KY, Choi HN, Moon WS, Kwon K et al. Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis. Leuk Lymph 2008; 49: 247–256.

    Article  CAS  Google Scholar 

  13. Hasselblom S, Sigurdadottir M, Hansson U, Nilsson-Ehle H, Ridell B, Andersson PO . The number of tumour-infiltrating TIA-1+ cytotoxic T cells but not FOXP3+ regulatory T cells predicts outcome in diffuse large B-cell lymphoma. Br J Haematol 2007; 137: 364–373.

    Article  CAS  PubMed  Google Scholar 

  14. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103: 275–282.

    Article  CAS  PubMed  Google Scholar 

  15. Nyman H, Jerkeman M, Karjalainen-Lindsberg ML, Banham AH, Leppa S . Prognostic impact of activated B-cell focused classification in diffuse large B-cell lymphoma patients treated with R-CHOP. Mod Pathol 2009; 22: 1094–1101.

    Article  CAS  PubMed  Google Scholar 

  16. Nyman H, Adde M, Karjalainen-Lindsberg ML, Taskinen M, Berglund M, Amini RM et al. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood 2007; 109: 4930–4935.

    Article  CAS  PubMed  Google Scholar 

  17. Mikhaeel NG . Interim fluorodeoxyglucose positron emission tomography for early response assessment in diffuse large B cell lymphoma: where are we now? Leuk Lymph 2009; 50: 1931–1936.

    Article  Google Scholar 

  18. Duhrsen U, Huttmann A, Jockel KH, Muller S . Positron emission tomography guided therapy of aggressive non-Hodgkin lymphomas—the PETAL trial. Leuk Lymph 2009; 50: 1757–1760.

    Article  Google Scholar 

  19. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  20. Oki Y, Yamamoto K, Kato H, Kuwatsuka Y, Taji H, Kagami Y et al. Low absolute lymphocyte count is a poor prognostic marker in patients with diffuse large B-cell lymphoma and suggests patients' survival benefit from rituximab. Eur J Haematol 2008; 81: 448–453.

    Article  PubMed  Google Scholar 

  21. Behl D, Ristow K, Markovic SN, Witzig TE, Habermann TM, Colgan JP et al. Absolute lymphocyte count predicts therapeutic efficacy of rituximab therapy in follicular lymphomas. Br J Haematol 2007; 137: 409–415.

    Article  CAS  PubMed  Google Scholar 

  22. Cox MC, Nofroni I, Laverde G, Ferrari A, Amodeo R, Tatarelli C et al. Absolute lymphocyte count is a prognostic factor in diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 265–268.

    Article  PubMed  Google Scholar 

  23. Kim DH, Baek JH, Chae YS, Kim YK, Kim HJ, Park YH et al. Absolute lymphocyte counts predicts response to chemotherapy and survival in diffuse large B-cell lymphoma. Leukemia 2007; 21: 2227–2230.

    Article  CAS  PubMed  Google Scholar 

  24. Fruehauf S, Tricot G . Comparison of unmobilized and mobilized graft characteristics and the implications of cell subsets on autologous and allogeneic transplantation outcomes. Biol Blood Marrow Transplant 2010; 16: 1629–1648.

    Article  PubMed  Google Scholar 

  25. Shivakumar L, Ansell S . Targeting B-lymphocyte stimulator/B-cell activating factor and a proliferation-inducing ligand in hematologic malignancies. Clin Lymph Myel 2006; 7: 106–108.

    Article  Google Scholar 

  26. Wilcox RA, Wada DA, Ziesmer SC, Elsawa SF, Comfere NI, Dietz AB et al. Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells. Blood 2009; 114: 2936–2944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cox CJ, Habermann TM, Payne BA, Klee GG, Pierre RV . Evaluation of the Coulter Counter model S-Plus IV. Am J Clin Pathol 1985; 84: 297–306.

    Article  CAS  PubMed  Google Scholar 

  28. Anonymous . A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med 1993; 329: 987–994.

    Article  Google Scholar 

  29. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  30. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007; 25: 579–586.

    Article  PubMed  Google Scholar 

  31. Song MK, Chung JS, Seol YM, Kim SG, Shin HJ, Choi YJ et al. Influence of low absolute lymphocyte count of patients with nongerminal center type diffuse large B-cell lymphoma with R-CHOP therapy. Ann Oncol 2010; 21: 140–144.

    Article  PubMed  Google Scholar 

  32. Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Hogan WJ et al. New-onset lymphopenia assessed during routine follow-up is a risk factor for relapse postautologous peripheral blood hematopoietic stem cell transplantation in patients with diffuse large B-cell lymphoma. Biol Blood Marrow Transplant 2010; 16: 376–383.

    Article  PubMed  Google Scholar 

  33. Cox DR . Regression models and life tablets. J R Statist Soc Ser C 1972; 34: 187–202.

    Google Scholar 

  34. Ansell SM, Stenson M, Habermann TM, Jelinek DF, Witzig TE . Cd4+ T-cell immune response to large B-cell non-Hodgkin's lymphoma predicts patient outcome. J Clin Oncol 2001; 19: 720–726.

    Article  CAS  PubMed  Google Scholar 

  35. Young MR, Newby M, Wepsic HT . Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 1987; 47: 100–105.

    CAS  PubMed  Google Scholar 

  36. Young MR, Ellis NK, Young ME, Wepsic HT . Stimulation of hematopoiesis and bone marrow suppressor cells by the subcutaneous injection of linoleic acid. Cell Immunol 1987; 107: 238–248.

    Article  CAS  PubMed  Google Scholar 

  37. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seung LP, Rowley DA, Dubey P, Schreiber H . Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA 1995; 92: 6254–6258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mandrekar SJ, Schild SE, Hillman SL, Allen KL, Marks RS, Mailliard JA et al. A prognostic model for advanced stage nonsmall cell lung cancer. Pooled analysis of North Central Cancer Treatment Group trials. Cancer 2006; 107: 781–792.

    Article  PubMed  Google Scholar 

  40. Schmidt H, Bastholt L, Geertsen P, Christensen IJ, Larsen S, Gehl J et al. Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer 2005; 93: 273–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt H, Suciu S, Punt CJ, Gore M, Kruit W, Patel P et al. Pretreatment levels of peripheral neutrophils and leukocytes as independent predictors of overall survival in patients with American Joint Committee on Cancer Stage IV Melanoma: results of the EORTC 18951 Biochemotherapy Trial. J Clin Oncol 2007; 25: 1562–1569.

    Article  CAS  PubMed  Google Scholar 

  42. Michael M, Goldstein D, Clarke SJ, Milner AD, Beale P, Friedlander M et al. Prognostic factors predictive of response and survival to a modified FOLFOX regimen: importance of an increased neutrophil count. Clin Colorectal Cancer 2006; 6: 297–304.

    Article  CAS  PubMed  Google Scholar 

  43. Choueiri TK, Garcia JA, Elson P, Khasawneh M, Usman S, Golshayan AR et al. Clinical factors associated with outcome in patients with metastatic clear-cell renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy. Cancer 2007; 110: 543–550.

    Article  CAS  PubMed  Google Scholar 

  44. Donskov F, von der Maase H . Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J Clin Oncol 2006; 24: 1997–2005.

    Article  PubMed  Google Scholar 

  45. Paesmans M, Sculier JP, Lecomte J, Thiriaux J, Libert P, Sergysels R et al. Prognostic factors for patients with small cell lung carcinoma: analysis of a series of 763 patients included in 4 consecutive prospective trials with a minimum follow-up of 5 years. Cancer 2000; 89: 523–533.

    Article  CAS  PubMed  Google Scholar 

  46. Takasaki Y, Iwanaga M, Tsukasaki K, Kusano M, Sugahara K, Yamada Y et al. Impact of visceral involvements and blood cell count abnormalities on survival in adult T-cell leukemia/lymphoma (ATLL). Leuk Res 2007; 31: 751–757.

    Article  PubMed  Google Scholar 

  47. Wilcox RA, Feldman AL, Wada DA, Yang ZZ, Comfere NI, Dong H et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood 2009; 114: 2149–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilcox RA . Cancer-associated myeloproliferation: old association, new therapeutic target. Mayo Clin Proc 2010; 85: 656–663.

    Article  PubMed  PubMed Central  Google Scholar 

  49. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005; 8: 211–226.

    Article  CAS  PubMed  Google Scholar 

  50. Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 2007; 109: 5276–5285.

    Article  CAS  PubMed  Google Scholar 

  51. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A . Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 2004; 172: 3268–3279.

    Article  CAS  PubMed  Google Scholar 

  52. Novak AJ, Grote DM, Stenson M, Ziesmer SC, Witzig TE, Habermann TM et al. Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood 2004; 104: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  53. Oki Y, Georgakis GV, Migone TS, Kwak LW, Younes A . Elevated serum BLyS levels in patients with non-Hodgkin lymphoma. Leuk Lymph 2007; 48: 1869–1871.

    Article  CAS  Google Scholar 

  54. Seiffert M, Schulz A, Ohl S, Dohner H, Stilgenbauer S, Lichter P . Soluble CD14 is a novel monocyte-derived survival factor for chronic lymphocytic leukemia cells, which is induced by CLL cells in vitro and present at abnormally high levels in vivo. Blood 2010; 116: 4223–4230.

    Article  CAS  PubMed  Google Scholar 

  55. Porrata LF, Markovic SN . Timely reconstitution of immune competence affects clinical outcome following autologous stem cell transplantation. Clin Exp Med 2004; 4: 78–85.

    Article  CAS  PubMed  Google Scholar 

  56. Weiner GJ . Rituximab: mechanism of action. Semin Hematol 2010; 47: 115–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ko JS, Bukowski RM, Fincke JH . Myeloid-derived suppressor cells: a novel therapeutic target. Curr Oncol Rep 2009; 11: 87–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Wilcox.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

RAW designed study, performed research, analyzed data and wrote the manuscript; KR performed research, provided technical assistance and reviewed the manuscript; TMH, DJI, INMM, PBJ, JPC, GSN, SMA, TEW and SNM assisted with data analysis and manuscript preparation; LP assisted with study design, data analysis and manuscript preparation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcox, R., Ristow, K., Habermann, T. et al. The absolute monocyte and lymphocyte prognostic score predicts survival and identifies high-risk patients in diffuse large-B-cell lymphoma. Leukemia 25, 1502–1509 (2011). https://doi.org/10.1038/leu.2011.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.112

Keywords

This article is cited by

Search

Quick links