Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

CD40 stimulation sensitizes CLL cells to rituximab-induced cell death

Abstract

In vitro CD40-stimulated chronic lymphocytic leukemia (CLL) cells are resistant to cytotoxic drugs. In sharp contrast, we here show that CD40 stimulation sensitizes CLL cells to rituximab-mediated cell death. This increased sensitivity is specific for anti-CD20 treatment. Rituximab-mediated death in CD40-stimulated CLL cells shows rapid kinetics (within hours), and is caspase and p53 independent, but depends on extracellular Ca2+ and reactive oxygen species (ROS) production. By increasing basal ROS production, CD40 stimulation sensitizes CLL cells to rituximab-mediated death. Our findings provide a rationale for combination treatment of CLL with cytotoxic drugs and anti-CD20 monoclonal antibodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Caligaris-Cappio F . Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 2003; 123: 380–388.

    Article  PubMed  Google Scholar 

  2. Schmid C, Isaacson PG . Proliferation centres in B-cell malignant lymphoma, lymphocytic (B-CLL): an immunophenotypic study. Histopathology 1994; 24: 445–451.

    Article  CAS  PubMed  Google Scholar 

  3. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 2002; 32: 1403–1413.

    Article  CAS  PubMed  Google Scholar 

  5. Hallaert DY, Jaspers A, van Noesel CJ, van Oers MH, Kater AP, Eldering E . c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL: implications for therapeutic targeting of chemoresistant niches. Blood 2008; 112: 5141–5149.

    Article  CAS  PubMed  Google Scholar 

  6. Kater AP, Evers LM, Remmerswaal EB, Jaspers A, Oosterwijk MF, van Lier RA et al. CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack. Br J Haematol 2004; 127: 404–415.

    Article  CAS  PubMed  Google Scholar 

  7. Smit LA, Hallaert DY, Spijker R, de GB, Jaspers A, Kater AP et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 2007; 109: 1660–1668.

    Article  CAS  PubMed  Google Scholar 

  8. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010; 376: 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  9. Almasri NM, Duque RE, Iturraspe J, Everett E, Braylan RC . Reduced expression of CD20 antigen as a characteristic marker for chronic lymphocytic leukemia. Am J Hematol 1992; 40: 259–263.

    Article  CAS  PubMed  Google Scholar 

  10. Ginaldi L, De MM, Matutes E, Farahat N, Morilla R, Catovsky D . Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol 1998; 51: 364–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001; 98: 3383–3389.

    Article  CAS  PubMed  Google Scholar 

  12. Manshouri T, Do KA, Wang X, Giles FJ, O'Brien SM, Saffer H et al. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood 2003; 101: 2507–2513.

    Article  CAS  PubMed  Google Scholar 

  13. Jilani I, O'Brien S, Manshuri T, Thomas DA, Thomazy VA, Imam M et al. Transient down-modulation of CD20 by rituximab in patients with chronic lymphocytic leukemia. Blood 2003; 102: 3514–3520.

    Article  CAS  PubMed  Google Scholar 

  14. Kennedy AD, Beum PV, Solga MD, DiLillo DJ, Lindorfer MA, Hess CE et al. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol 2004; 172: 3280–3288.

    Article  CAS  PubMed  Google Scholar 

  15. Golay J, Manganini M, Facchinetti V, Gramigna R, Broady R, Borleri G et al. Rituximab-mediated antibody-dependent cellular cytotoxicity against neoplastic B cells is stimulated strongly by interleukin-2. Haematologica 2003; 88: 1002–1012.

    CAS  PubMed  Google Scholar 

  16. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003; 21: 1466–1471.

    Article  CAS  PubMed  Google Scholar 

  17. van der Kolk LE, Evers LM, Omene C, Lens SM, Lederman S, van Lier RA et al. CD20-induced B cell death can bypass mitochondria and caspase activation. Leukemia 2002; 16: 1735–1744.

    Article  CAS  PubMed  Google Scholar 

  18. Alvi AJ, Austen B, Weston VJ, Fegan C, MacCallum D, Gianella-Borradori A et al. A novel CDK inhibitor, CYC202 (R-roscovitine), overcomes the defect in p53-dependent apoptosis in B-CLL by down-regulation of genes involved in transcription regulation and survival. Blood 2005; 105: 4484–4491.

    Article  CAS  PubMed  Google Scholar 

  19. Hallaert DY, Spijker R, Jak M, Derks IA, Alves NL, Wensveen FM et al. Crosstalk among Bcl-2 family members in B-CLL: seliciclib acts via the Mcl-1/Noxa axis and gradual exhaustion of Bcl-2 protection. Cell Death Differ 2007; 14: 1958–1967.

    Article  CAS  PubMed  Google Scholar 

  20. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH . Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415–1420.

    CAS  PubMed  Google Scholar 

  21. Krishan A . Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 1975; 66: 188–193.

    Article  CAS  PubMed  Google Scholar 

  22. Jakubowski W, Bartosz G . 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 2000; 24: 757–760.

    Article  CAS  PubMed  Google Scholar 

  23. Anolik J, Looney RJ, Bottaro A, Sanz I, Young F . Down-regulation of CD20 on B cells upon CD40 activation. Eur J Immunol 2003; 33: 2398–2409.

    Article  CAS  PubMed  Google Scholar 

  24. Eldering E, Spek CA, Aberson HL, Grummels A, Derks IA, de Vos AF et al. Expression profiling via novel multiplex assay allows rapid assessment of gene regulation in defined signalling pathways. Nucleic Acids Res 2003; 31: e153.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grdisa M . Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk Res 2003; 27: 951–956.

    Article  CAS  PubMed  Google Scholar 

  26. Ivanov A, Beers SA, Walshe CA, Honeychurch J, Alduaij W, Cox KL et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Invest 2009; 119: 2143–2159.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stanglmaier M, Reis S, Hallek M . Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol 2004; 83: 634–645.

    Article  CAS  PubMed  Google Scholar 

  28. Cheson BD . Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 2010; 28: 3525–3530.

    Article  CAS  PubMed  Google Scholar 

  29. Dworzak MN, Schumich A, Printz D, Potschger U, Husak Z, Attarbaschi A et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood 2008; 112: 3982–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eldering E, Mackus WJ, Derks IA, Evers LM, Beuling E, Teeling P et al. Apoptosis via the B cell antigen receptor requires Bax translocation and involves mitochondrial depolarization, cytochrome C release, and caspase-9 activation. Eur J Immunol 2004; 34: 1950–1960.

    Article  CAS  PubMed  Google Scholar 

  31. Kansas GS, Tedder TF . Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J Immunol 1991; 147: 4094–4102.

    CAS  PubMed  Google Scholar 

  32. Glennie MJ, French RR, Cragg MS, Taylor RP . Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 2007; 44: 3823–3837.

    Article  CAS  PubMed  Google Scholar 

  33. Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF . Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 1993; 121: 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  34. Walshe CA, Beers SA, French RR, Chan CH, Johnson PW, Packham GK et al. Induction of cytosolic calcium flux by CD20 is dependent upon B Cell antigen receptor signaling. J Biol Chem 2008; 283: 16971–16984.

    Article  CAS  PubMed  Google Scholar 

  35. Daniels I, Turzanski J, Haynes AP . A requirement for calcium in the caspase-independent killing of Burkitt lymphoma cell lines by Rituximab. Br J Haematol 2008; 142: 394–403.

    Article  CAS  PubMed  Google Scholar 

  36. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS . Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004; 287: C817–C833.

    Article  CAS  PubMed  Google Scholar 

  37. Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha RS et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006; 40: 553–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Millan-Ward E, Kong J, Israels SJ, Gibson SB . Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 2008; 15: 171–182.

    Article  CAS  PubMed  Google Scholar 

  39. Golstein P, Kroemer G . Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007; 32: 37–43.

    Article  CAS  PubMed  Google Scholar 

  40. Hampton MB, Fadeel B, Orrenius S . Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci 1998; 854: 328–335.

    Article  CAS  PubMed  Google Scholar 

  41. Jaattela M, Tschopp J . Caspase-independent cell death in T lymphocytes. Nat Immunol 2003; 4: 416–423.

    Article  PubMed  Google Scholar 

  42. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005; 12 (Suppl 2): 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  43. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z . Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007; 26: 1749–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tonino SH, van LJ, van Oers MH, Wang JY, Eldering E, Kater AP . ROS-mediated upregulation of Noxa overcomes chemoresistance in chronic lymphocytic leukemia. Oncogene 2010; 30: 701–713.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Deans JP, Li H, Polyak MJ . CD20-mediated apoptosis: signalling through lipid rafts. Immunology 2002; 107: 176–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghetie MA, Bright H, Vitetta ES . Homodimers but not monomers of Rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin. Blood 2001; 97: 1392–1398.

    Article  CAS  PubMed  Google Scholar 

  47. Hofmeister JK, Cooney D, Coggeshall KM . Clustered CD20 induced apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis 2000; 26: 133–143.

    Article  CAS  PubMed  Google Scholar 

  48. Cragg MS, Glennie MJ . Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 2004; 103: 2738–2743.

    Article  CAS  PubMed  Google Scholar 

  49. Daniels I, Abulayha AM, Thomson BJ, Haynes AP . Caspase-independent killing of Burkitt lymphoma cell lines by rituximab. Apoptosis 2006; 11: 1013–1023.

    Article  CAS  PubMed  Google Scholar 

  50. Stendel R, Biefer HR, Dekany GM, Kubota H, Munz C, Wang S et al. The antibacterial substance taurolidine exhibits anti-neoplastic action based on a mixed type of programmed cell death. Autophagy 2009; 5: 194–210.

    Article  CAS  PubMed  Google Scholar 

  51. Jazirehi AR, Bonavida B . Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene 2005; 24: 2121–2143.

    Article  CAS  PubMed  Google Scholar 

  52. Daniels I, Turzanski J, Haynes AP . A requirement for calcium in the caspase-independent killing of Burkitt lymphoma cell lines by Rituximab. Br J Haematol 2008; 142: 394–403.

    Article  CAS  PubMed  Google Scholar 

  53. Turzanski J, Daniels I, Haynes AP . Involvement of macroautophagy in the caspase-independent killing of Burkitt lymphoma cell lines by rituximab. Br J Haematol 2009; 145: 137–140.

    Article  CAS  PubMed  Google Scholar 

  54. Li H, Ayer LM, Lytton J, Deans JP . Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 2003; 278: 42427–42434.

    Article  CAS  PubMed  Google Scholar 

  55. Stein R, Gupta P, Chen X, Cardillo TM, Furman RR, Chen S et al. Therapy of B-cell malignancies by anti-HLA-DR humanized monoclonal antibody, IMMU-114, is mediated through hyperactivation of ERK and JNK MAP kinase signaling pathways. Blood 2010; 115: 5180–5190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P . Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 2003; 101: 4098–4104.

    Article  CAS  PubMed  Google Scholar 

  57. Lee JR, Koretzky GA . Production of reactive oxygen intermediates following CD40 ligation correlates with c-Jun N-terminal kinase activation and IL-6 secretion in murine B lymphocytes. Eur J Immunol 1998; 28: 4188–4197.

    Article  CAS  PubMed  Google Scholar 

  58. Lee JR . Reactive oxygen species play roles on B cell surface receptor CD40-mediated proximal and distal signaling events: effects of an antioxidant, N-acetyl-L-cysteine treatment. Mol Cell Biochem 2003; 252: 1–7.

    Article  CAS  PubMed  Google Scholar 

  59. Bragado P, Armesilla A, Silva A, Porras A . Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 2007; 12: 1733–1742.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to our patients for their commitment to this study. We would like to thank Peter Teeling from the Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands, for his kind help with electron microscopy, Berend Hooibrink from the Department of Cell Biology, Academic Medical Center, Amsterdam for his assistance on the FACS Vantage SE in the Ca2+ flux experiments and Dr Meijer from the Department of Medical Biochemistry, Academic Medical Center, Amsterdam, for his help in the autophagy experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Jak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jak, M., van Bochove, G., van Lier, R. et al. CD40 stimulation sensitizes CLL cells to rituximab-induced cell death. Leukemia 25, 968–978 (2011). https://doi.org/10.1038/leu.2011.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.39

Keywords

This article is cited by

Search

Quick links