Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

DNA vaccines to target the cancer testis antigen PASD1 in human multiple myeloma

Abstract

We previously described PASD1 as a new cancer testis antigen in multiple myeloma (MM) that is retained post-therapy, suggesting the use of vaccination strategies to induce anti-PASD1 immunity in a setting of minimal residual disease. We have focused on DNA fusion gene vaccines, coupling fragment C domain (DOM) of tetanus toxin with PASD1 sequence, and examined efficacy in Human Leukocyte Antigen (HLA)-A2 (HHD) transgenic mice using a human MM cell line expressing PASD1 protein and chimeric HLA-A2 class I molecules as target. DNA vaccines encoded two HLA-A2-restricted epitopes (p.DOM-PASD1(1), p.DOM-PASD1(2)) and full-length PASD1 (p.DOM-PASD1FL). p.DOM-PASD1(1) proved superior to p.DOM-PASD1(2) in generating T-cell responses in HHD mice, able to lyse the chimeric murine RMA-HHD cells. Boosting by electroporation significantly enhanced p.DOM-PASD1(1). Only p.DOM-PASD1(1) induced cytotoxic T-lymphocytes (CTLs) were able to lyse human MM target cells expressing endogenous antigen. The p.DOM-PASD1FL vaccine predominantly induced strong PASD1(1) over PASD1(2) T-cell immune responses, indicative of immunodominance. Importantly, p.DOM-PASD1FL generated immune-mediating killing of native chimeric MM cells, in the absence of exogenous added peptide, implicating PASD1(1) specific CTLs. These data demonstrate that PASD1-derived epitopes are both efficiently and selectively processed and presented by native human MM cells. Notably, they permit the use of PASD1-encoding DNA vaccine therapy in a clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sirohi B, Powles R . Multiple myeloma. Lancet 2004; 363: 875–887.

    Article  PubMed  Google Scholar 

  2. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rice J, King CA, Spellerberg MB, Fairweather N, Stevenson FK . Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 1999; 17: 3030–3038.

    Article  CAS  PubMed  Google Scholar 

  4. Spellerberg MB, Zhu D, Thompsett A, King CA, Hamblin TJ, Stevenson FK . DNA vaccines against lymphoma: promotion of anti-idiotypic antibody responses induced by single chain Fv genes by fusion to tetanus toxin fragment C. J Immunol 1997; 159: 1885–1892.

    CAS  PubMed  Google Scholar 

  5. King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 1998; 4: 1281–1286.

    Article  CAS  PubMed  Google Scholar 

  6. Rice J, Buchan S, Dewchand H, Simpson E, Stevenson FK . DNA fusion vaccines induce targeted epitope-specific CTLs against minor histocompatibility antigens from a normal or tolerized repertoire. J Immunol 2004; 173: 4492–4499.

    Article  CAS  PubMed  Google Scholar 

  7. Rice J, Dossett ML, Ohlen C, Buchan SL, Kendall TJ, Dunn SN et al. DNA fusion gene vaccination mobilizes effective anti-leukemic cytotoxic T lymphocytes from a tolerized repertoire. Eur J Immunol 2008; 38: 2118–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rice J, Elliott T, Buchan S, Stevenson FK . DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J Immunol 2001; 167: 1558–1565.

    Article  CAS  PubMed  Google Scholar 

  9. Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I et al. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 2009; 20: 1269–1278.

    Article  CAS  PubMed  Google Scholar 

  10. Chen YT, Gure AO, Tsang S, Stockert E, Jager E, Knuth A et al. Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc Natl Acad Sci USA 1998; 95: 6919–6923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Condomines M, Hose D, Reme T, Requirand G, Hundemer M, Schoenhals M et al. Gene expression profiling and real-time PCR analyses identify novel potential cancer-testis antigens in multiple myeloma. J Immunol 2009; 183: 832–840.

    Article  CAS  PubMed  Google Scholar 

  12. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT . Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 2002; 188: 22–32.

    Article  CAS  PubMed  Google Scholar 

  13. Suri A . Cancer testis antigens—their importance in immunotherapy and in the early detection of cancer. Expert Opin Biol Ther 2006; 6: 379–389.

    Article  CAS  PubMed  Google Scholar 

  14. Scanlan MJ, Simpson AJ, Old LJ . The cancer/testis genes: review, standardization, and commentary. Cancer Immun 2004; 4: 1.

    PubMed  Google Scholar 

  15. Goodyear OC, Pratt G, McLarnon A, Cook M, Piper K, Moss P . Differential pattern of CD4+ and CD8+ T-cell immunity to MAGE-A1/A2/A3 in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma. Blood 2008; 112: 3362–3372.

    Article  CAS  PubMed  Google Scholar 

  16. Sahota SS, Goonewardena CM, Cooper CD, Liggins AP, Ait-Tahar K, Zojer N et al. PASD1 is a potential multiple myeloma-associated antigen. Blood 2006; 108: 3953–3955.

    Article  CAS  PubMed  Google Scholar 

  17. Liggins AP, Brown PJ, Asker K, Pulford K, Banham AH . A novel diffuse large B-cell lymphoma-associated cancer testis antigen encoding a PAS domain protein. Br J Cancer 2004; 91: 141–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooper CD, Liggins AP, Ait-Tahar K, Roncador G, Banham AH, Pulford K . PASD1, a DLBCL-associated cancer testis antigen and candidate for lymphoma immunotherapy. Leukemia 2006; 20: 2172–2174.

    Article  CAS  PubMed  Google Scholar 

  19. Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B . HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 1997; 185: 2043–2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ait-Tahar K, Liggins AP, Collins GP, Campbell A, Barnardo M, Lawrie C et al. Cytolytic T-cell response to the PASD1 cancer testis antigen in patients with diffuse large B-cell lymphoma. Br J Haematol 2009; 146: 396–407.

    Article  CAS  PubMed  Google Scholar 

  21. Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J . Electroporation as a ‘prime/boost’ strategy for naked DNA vaccination against a tumor antigen. J Immunol 2005; 174: 6292–6298.

    Article  CAS  PubMed  Google Scholar 

  22. Dhodapkar MV, Osman K, Teruya-Feldstein J, Filippa D, Hedvat CV, Iversen K et al. Expression of cancer/testis antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 2003; 3: 9.

    PubMed  Google Scholar 

  23. Radcliffe JN, Roddick JS, Friedmann PS, Stevenson FK, Thirdborough SM . Prime-boost with alternating DNA vaccines designed to engage different antigen presentation pathways generates high frequencies of peptide-specific CD8+ T cells. J Immunol 2006; 177: 6626–6633.

    Article  CAS  PubMed  Google Scholar 

  24. Palmowski MJ, Choi EM, Hermans IF, Gilbert SC, Chen JL, Gileadi U et al. Competition between CTL narrows the immune response induced by prime-boost vaccination protocols. J Immunol 2002; 168: 4391–4398.

    Article  CAS  PubMed  Google Scholar 

  25. Stevenson FK, Ottensmeier CH, Rice J . DNA vaccines against cancer come of age. Curr Opin Immunol 2010; 22: 264–270.

    Article  CAS  PubMed  Google Scholar 

  26. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 2009; 113: 5412–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 2007; 204: 831–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lendvai N, Gnjatic S, Ritter E, Mangone M, Austin W, Reyner K et al. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients. Cancer Immun 2010; 10: 4.

    PubMed  PubMed Central  Google Scholar 

  29. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24: 3089–3094.

    Article  CAS  PubMed  Google Scholar 

  30. Administration. UFaD. FDA labelling information—Provenge. FDA website (online), http://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdf, 2010.

Download references

Acknowledgements

Funding: Leukaemia & Lymphoma Research (UK), EU FP6 Grant 037602 (MSCNET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Sahota.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph-Pietras, D., Gao, Y., Zojer, N. et al. DNA vaccines to target the cancer testis antigen PASD1 in human multiple myeloma. Leukemia 24, 1951–1959 (2010). https://doi.org/10.1038/leu.2010.196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.196

Keywords

Search

Quick links