Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer

Abstract

Hemizygous deletions are common molecular abnormalities in cancer. In some cases, these deletions highlight chromosomal loci containing tumor suppressor genes that undergo homozygous inactivation. In other cases, hemizygous deletions cause disease by allelic insufficiency for one or more genes. As the intact allele has no identifiable lesions, functional approaches are critical for the identification of pathogenic genes within large deletions. Hemizygous, interstitial deletion of chromosome 5q is the most common cytogenetic abnormality in myelodysplastic syndrome (MDS) and has been the focus of functional analysis. Some patients with this molecular lesion have the 5q− syndrome, a disorder with a highly consistent clinical phenotype. A systematic RNA interference screen to interrogate the function of each gene in the common deleted region (CDR) for the 5q− syndrome identified RPS14 as a critical haploinsufficiency disease gene for the erythroid failure, which is a characteristic of this syndrome. Genes located in an adjacent deleted region have also been implicated in MDS. The full clinical phenotype is likely caused by the integration of effects from allelic insufficiency for multiple genes. With the identification and characterization of these genes, the 5q deletion is becoming a model for understanding hemizygous chromosomal deletions in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Knudson Jr AG . Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Foulkes WD . Inherited susceptibility to common cancers. N Engl J Med 2008; 359: 2143–2153.

    Article  CAS  PubMed  Google Scholar 

  3. Fodde R, Smits R . Cancer biology. A matter of dosage. Science 2002; 298: 761–763.

    Article  CAS  PubMed  Google Scholar 

  4. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA . Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 2001; 98: 9742–9747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  6. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  7. Rubinson D, Dillon C, Kwiatkowski A, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genetics 2003; 33: 401–405.

    Article  CAS  PubMed  Google Scholar 

  8. Van den Berghe H, Cassiman JJ, David G, Fryns JP, Michaux JL, Sokal G . Distinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature 1974; 251: 437–438.

    Article  CAS  PubMed  Google Scholar 

  9. Boultwood J, Lewis S, Wainscoat JS . The 5q- syndrome. Blood 1994; 84: 3253–3260.

    CAS  PubMed  Google Scholar 

  10. Giagounidis AA, Germing U, Wainscoat JS, Boultwood J, Aul C . The 5q- syndrome. Hematology 2004; 9: 271–277.

    Article  CAS  PubMed  Google Scholar 

  11. Lewis S, Oscier D, Boultwood J, Ross F, Fitchett M, Rack K et al. Hematological features of patients with myelodysplastic syndromes associated with a chromosome 5q deletion. Am J Hematol 1995; 49: 194–200.

    Article  CAS  PubMed  Google Scholar 

  12. Mahmood T, Robinson WA, Hamstra RD, Wallner SF . Macrocytic anemia, thrombocytosis and nonlobulated megakaryocytes: the 5q-syndrome, a distinct entity. Am J Med 1979; 66: 946–950.

    Article  CAS  PubMed  Google Scholar 

  13. Mathew P, Tefferi A, Dewald GW, Goldberg SL, Su J, Hoagland HC et al. The 5q- syndrome: a single-institution study of 43 consecutive patients. Blood 1993; 81: 1040–1045.

    CAS  PubMed  Google Scholar 

  14. Nimer SD . Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol 2006; 24: 2576–2582.

    Article  CAS  PubMed  Google Scholar 

  15. Vardiman J . Myelodysplastic syndrome with isolated del(5q) chromosome abnormality. Blood 2003; 101: 3346.

    Google Scholar 

  16. Vardiman JW, Harris NL, Brunning RD . The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100: 2292–2302.

    Article  CAS  PubMed  Google Scholar 

  17. Holtan SG, Santana-Davila R, Dewald GW, Khetterling RP, Knudson RA, Hoyer JD et al. Myelodysplastic syndromes associated with interstitial deletion of chromosome 5q: clinicopathologic correlations and new insights from the pre-lenalidomide era. Am J Hematol 2008; 83: 708–713.

    Article  PubMed  Google Scholar 

  18. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  19. Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 2007; 110: 4385–4395.

    Article  CAS  PubMed  Google Scholar 

  20. Le Beau MM, Westbrook CA, Diaz MO, Larson RA, Rowley JD, Gasson JC et al. Evidence for the involvement of GM-CSF and FMS in the deletion (5q) in myeloid disorders. Science 1986; 231: 984–987.

    Article  CAS  PubMed  Google Scholar 

  21. Willman CL, Sever CE, Pallavicini MG, Harada H, Tanaka N, Slovak ML et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 1993; 259: 968–971.

    Article  CAS  PubMed  Google Scholar 

  22. Heaney ML, Golde DW . Myelodysplasia. N Engl J Med 1999; 340: 1649–1660.

    Article  CAS  PubMed  Google Scholar 

  23. Boultwood J, Fidler C, Lewis S, Kelly S, Sheridan H, Littlewood TJ et al. Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q- syndrome: delineation of the critical region on 5q and identification of a 5q- breakpoint. Genomics 1994; 19: 425–432.

    Article  CAS  PubMed  Google Scholar 

  24. Boultwood J, Fidler C, Strickson AJ, Watkins F, Gama S, Kearney L et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 2002; 99: 4638–4641.

    Article  CAS  PubMed  Google Scholar 

  25. Jaju RJ, Boultwood J, Oliver FJ, Kostrzewa M, Fidler C, Parker N et al. Molecular cytogenetic delineation of the critical deleted region in the 5q- syndrome. Genes Chromosomes Cancer 1998; 22: 251–256.

    Article  CAS  PubMed  Google Scholar 

  26. Horrigan SK, Arbieva ZH, Xie HY, Kravarusic J, Fulton NC, Naik H et al. Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood 2000; 95: 2372–2377.

    CAS  PubMed  Google Scholar 

  27. Horrigan SK, Westbrook CA, Kim AH, Banerjee M, Stock W, Larson RA . Polymerase chain reaction-based diagnosis of del (5q) in acute myeloid leukemia and myelodysplastic syndrome identifies a minimal deletion interval. Blood 1996; 88: 2665–2670.

    CAS  PubMed  Google Scholar 

  28. Zhao N, Stoffel A, Wang PW, Eisenbart JD, Espinosa III R, Larson RA et al. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1–1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci USA 1997; 94: 6948–6953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  30. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316.

    Article  CAS  PubMed  Google Scholar 

  31. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  32. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  33. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451: 335–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L et al. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 2007; 139: 578–589.

    Article  CAS  PubMed  Google Scholar 

  35. Valencia A, Cervera J, Such E, Sanz MA, Sanz GF . Lack of RPS14 promoter aberrant methylation supports the haploinsufficiency model for the 5q- syndrome. Blood 2008; 112: 918.

    Article  CAS  PubMed  Google Scholar 

  36. Choesmel V, Fribourg S, Aguissa-Toure AH, Pinaud N, Legrand P, Gazda HT et al. Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet 2008; 17: 1253–1263.

    Article  CAS  PubMed  Google Scholar 

  37. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Pospisilova D . Ribosomal protein S17 gene (RPS17) is mutated in Diamond–Blackfan anemia. Hum Mutat 2007; 28: 1178–1182.

    Article  CAS  PubMed  Google Scholar 

  38. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nat Genet 1999; 21: 169–175.

    Article  CAS  PubMed  Google Scholar 

  39. Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM et al. Ribosomal protein S24 gene is mutated in Diamond–Blackfan anemia. Am J Hum Genet 2006; 79: 1110–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Cretien A et al. Impaired ribosome biogenesis in Diamond–Blackfan anemia. Blood 2007; 109: 1275–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Flygare J, Aspesi A, Bailey JC, Miyake K, Caffrey JM, Karlsson S et al. Human RPS19, the gene mutated in Diamond–Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 2007; 109: 980–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farrar JE, Nater M, Caywood E, McDevitt MA, Kowalski J, Takemoto CM et al. Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond–Blackfan anemia. Blood 2008; 112: 1582–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu JM, Ellis SR . Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 2006; 107: 4583–4588.

    Article  CAS  PubMed  Google Scholar 

  44. Danilova N, Sakamoto KM, Lin S . Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 2008; 30: 30.

    Google Scholar 

  45. McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 2008; 40: 963–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uechi T, Nakajima Y, Chakraborty A, Torihara H, Higa S, Kenmochi N . Deficiency of ribosomal protein S19 during early embryogenesis leads to reduction of erythrocytes in a zebrafish model of Diamond–Blackfan anemia. Hum Mol Genet 2008; 17: 3204–3211.

    Article  CAS  PubMed  Google Scholar 

  47. Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2: E139.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wei S, Rocha K, Williams A, Chen X, Burnette PK, Djeu JY et al. Gene dosage of the cell cycle regulatory phosphatases Cdc25C and PP2A determines sensitivity ot lenalidomide in del(5q) MDS. Blood 2007; 110, (abstract 118).

  49. Liu TX, Becker MW, Jelinek J, Wu WS, Deng M, Mikhalkevich N et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 2007; 13: 78–83.

    Article  PubMed  Google Scholar 

  50. Ebert BL, Galili N, Tamayo P, Bosco J, Mak R, Pretz J et al. An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med 2008; 5: e35.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pellagatti A, Jadersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK et al. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci USA 2007; 104: 11406–11411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lehmann S, O′Kelly J, Raynaud S, Funk SE, Sage EH, Koeffler HP . Common deleted genes in the 5q- syndrome: thrombocytopenia and reduced erythroid colony formation in SPARC null mice. Leukemia 2007; 21: 1931–1936.

    Article  CAS  PubMed  Google Scholar 

  53. Fidler C, Strickson A, Boultwood J, Waincoat JS . Mutation analysis of the SPARC gene in the 5q-syndrome. Am J Hematol 2000; 64: 324.

    Article  CAS  PubMed  Google Scholar 

  54. Joslin JM, Fernald AA, Tennant TR, Davis EM, Kogan SC, Anastasi J et al. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 2007; 110: 719–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Min IM, Pietramaggiori G, Kim FS, Passegue E, Stevenson KE, Wagers AJ . The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2008; 2: 380–391.

    Article  CAS  PubMed  Google Scholar 

  56. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    Article  CAS  PubMed  Google Scholar 

  57. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005; 437: 147–153.

    Article  CAS  PubMed  Google Scholar 

  58. Grisendi S, Mecucci C, Falini B, Pandolfi PP . Nucleophosmin and cancer. Nat Rev Cancer 2006; 6: 493–505.

    Article  CAS  PubMed  Google Scholar 

  59. Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 2008; 111: 3859–3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr Ebert is supported by grants from the NHLBI (K08-HL078818 and 5R01-HL82945) and a Burroughs Wellcome Foundation Career Development Award in the Medical Sciences. Dr Ebert receives research funding from GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B L Ebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, B. Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia 23, 1252–1256 (2009). https://doi.org/10.1038/leu.2009.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.53

Keywords

This article is cited by

Search

Quick links