Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Chromatin maps, histone modifications and leukemia

Abstract

Recent years have seen great advances in the understanding of epigenetic gene regulation. Many of the molecular players involved have recently been identified and are rapidly being characterized in detail. Genome scale studies, using chromatin immunoprecipitation followed by expression arrays (‘ChIP-Chip’) or next generation sequencing (‘ChIP-Seq’), have been applied to the study of transcription factor binding, DNA methylation, alternative histone use, and covalent histone modifications such as acetylation, ubiquitination and methylation. Initial studies focused on yeast, and embryonic stem cells. Genome-wide studies are now also being employed to characterize cancer and specifically leukemia genomes, with the prospect of improved diagnostic accuracy and discovery of novel therapeutic strategies. Here, we review some of the epigenetic modifications and their relevance for leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Holliday R . Epigenetics: a historical overview. Epigenetics 2006; 1: 76–80.

    PubMed  Google Scholar 

  2. Feinberg AP, Ohlsson R, Henikoff S . The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006; 7: 21–33.

    CAS  PubMed  Google Scholar 

  3. Li E, Bestor TH, Jaenisch R . Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915–926.

    Article  CAS  PubMed  Google Scholar 

  4. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R . DNA hypomethylation leads to elevated mutation rates. Nature 1998; 395: 89–93.

    CAS  PubMed  Google Scholar 

  5. Rideout WM, Coetzee GA, Olumi AF, Jones PA . 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 1990; 249: 1288–1290.

    CAS  PubMed  Google Scholar 

  6. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP . Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 1985; 228: 187–190.

    CAS  PubMed  Google Scholar 

  7. Shames DS, Minna JD, Gazdar AF . DNA methylation in health, disease, and cancer. Curr Mol Med 2007; 7: 85–102.

    CAS  PubMed  Google Scholar 

  8. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 2006; 38: 1378–1385.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454: 766–770.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Suzuki MM, Bird A . DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9: 465–476.

    CAS  PubMed  Google Scholar 

  11. Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci USA 2008; 105: 252–257.

    CAS  PubMed  Google Scholar 

  12. Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 2007; 104: 5527–5532.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, Andreesen R et al. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res 2006; 66: 6118–6128.

    CAS  PubMed  Google Scholar 

  14. Kroeger H, Jelinek J, Estecio MR, He R, Kondo K, Chung W et al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood 2008; 112: 1366–1373.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Taylor KH, Pena-Hernandez KE, Davis JW, Arthur GL, Duff DJ, Shi H et al. Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res 2007; 67: 2617–2625.

    CAS  PubMed  Google Scholar 

  16. Kuang SQ, Tong WG, Yang H, Lin W, Lee MK, Fang ZH et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 2008; 22: 1529–1538.

    CAS  PubMed  Google Scholar 

  17. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 2006; 38: 149–153.

    CAS  PubMed  Google Scholar 

  18. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295: 1079–1082.

    CAS  PubMed  Google Scholar 

  19. Allfrey VG, Faulkner R, Mirsky AE . Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci USA 1964; 51: 786–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004; 101: 540–545.

    CAS  PubMed  Google Scholar 

  21. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK . Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2003; 2: 151–163.

    CAS  PubMed  Google Scholar 

  22. Roberts CW, Leroux MM, Fleming MD, Orkin SH . Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2002; 2: 415–425.

    CAS  PubMed  Google Scholar 

  23. Becker PB, Horz W . ATP-dependent nucleosome remodeling. Annu Rev Biochem 2002; 71: 247–273.

    CAS  PubMed  Google Scholar 

  24. Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 2008; 135: 649–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Henikoff S, Ahmad K . Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 2005; 21: 133–153.

    CAS  PubMed  Google Scholar 

  26. Garzon R, Croce CM . MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 2008; 15: 352–358.

    CAS  PubMed  Google Scholar 

  27. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT . Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322: 750–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Amaral PP, Dinger ME, Mercer TR, Mattick JS . The eukaryotic genome as an RNA machine. Science 2008; 319: 1787–1789.

    CAS  PubMed  Google Scholar 

  30. Jones PA, Taylor SM, Mohandas T, Shapiro LJ . Cell cycle-specific reactivation of an inactive X-chromosome locus by 5-azadeoxycytidine. Proc Natl Acad Sci USA 1982; 79: 1215–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Kohler G, Wijermans P et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957–2964.

    CAS  PubMed  Google Scholar 

  32. Garcia-Manero G . Demethylating agents in myeloid malignancies. Curr Opin Oncol 2008; 20: 705–710.

    CAS  PubMed  Google Scholar 

  33. Marks PA, Breslow R . Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 2007; 25: 84–90.

    CAS  PubMed  Google Scholar 

  34. Rasheed WK, Johnstone RW, Prince HM . Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs 2007; 16: 659–678.

    CAS  PubMed  Google Scholar 

  35. Shilatifard A . Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 2006; 75: 243–269.

    CAS  PubMed  Google Scholar 

  36. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    CAS  PubMed  Google Scholar 

  37. Zhang Y, Reinberg D . Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15: 2343–2360.

    CAS  PubMed  Google Scholar 

  38. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406: 593–599.

    CAS  PubMed  Google Scholar 

  39. Lachner M, O′Carroll D, Rea S, Mechtler K, Jenuwein T . Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410: 116–120.

    CAS  PubMed  Google Scholar 

  40. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI . Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001; 292: 110–113.

    CAS  PubMed  Google Scholar 

  41. Jacobs SA, Khorasanizadeh S . Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 2002; 295: 2080–2083.

    CAS  PubMed  Google Scholar 

  42. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129: 823–837.

    CAS  PubMed  Google Scholar 

  43. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436: 660–665.

    Article  CAS  PubMed  Google Scholar 

  44. Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T . Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 2005; 280: 17732–17736.

    CAS  PubMed  Google Scholar 

  45. Strahl BD, Grant PA, Briggs SD, Sun ZW, Bone JR, Caldwell JA et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 2002; 22: 1298–1306.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown MA, Sims RJ, Gottlieb PD, Tucker PW . Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 2006; 5: 26.

    PubMed  PubMed Central  Google Scholar 

  47. Rayasam GV, Wendling O, Angrand PO, Mark M, Niederreither K, Song L et al. NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J 2003; 22: 3153–3163.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Edmunds JW, Mahadevan LC, Clayton AL . Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2008; 27: 406–420.

    CAS  PubMed  Google Scholar 

  49. Tanaka Y, Katagiri Z, Kawahashi K, Kioussis D, Kitajima S . Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 2007; 397: 161–168.

    CAS  PubMed  Google Scholar 

  50. Wang GG, Cai L, Pasillas MP, Kamps MP . NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 2007; 9: 804–812.

    CAS  PubMed  Google Scholar 

  51. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 2001; 98: 12902–12907.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 2001; 20: 7137–7148.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML . A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci USA 2002; 99: 90–94.

    CAS  PubMed  Google Scholar 

  54. Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, Johnston M et al. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 2002; 277: 10753–10755.

    CAS  PubMed  Google Scholar 

  55. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 2001; 15: 3286–3295.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002; 10: 1119–1128.

    CAS  PubMed  Google Scholar 

  57. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  58. Guenther MG, Jenner RG, Chevalier B, Nakamura T, Croce CM, Canaani E et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA 2005; 102: 8603–8608.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315–326.

    CAS  PubMed  Google Scholar 

  60. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    CAS  PubMed  Google Scholar 

  61. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa III R, Patel Y, Harden A et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88: 10735–10739.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cimino G, Moir DT, Canaani O, Williams K, Crist WM, Katzav S et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res 1991; 51: 6712–6714.

    CAS  PubMed  Google Scholar 

  63. Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ . MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003; 100: 8342–8347.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 2005; 121: 873–885.

    CAS  PubMed  Google Scholar 

  65. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    CAS  PubMed  Google Scholar 

  66. Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 2002; 111: 197–208.

    CAS  PubMed  Google Scholar 

  67. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2002; 298: 1039–1043.

    CAS  PubMed  Google Scholar 

  68. Ringrose L, Paro R . Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu Rev Genet 2004; 38: 413–443.

    CAS  PubMed  Google Scholar 

  69. Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 2008; 15: 668–679.

    CAS  PubMed  Google Scholar 

  70. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32: 232–246.

    CAS  PubMed  Google Scholar 

  71. Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD, Khorasanizadeh S . Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by polycomb and HP1 chromodomains. Genes Dev 2003; 17: 1870–1881.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 2004; 7: 663–676.

    CAS  PubMed  Google Scholar 

  73. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS et al. Role of histone H2A ubiquitination in polycomb silencing. Nature 2004; 431: 873–878.

    CAS  PubMed  Google Scholar 

  74. Francis NJ, Kingston RE, Woodcock CL . Chromatin compaction by a polycomb group protein complex. Science 2004; 306: 1574–1577.

    CAS  PubMed  Google Scholar 

  75. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 2008; 4: e1000242.

    PubMed  PubMed Central  Google Scholar 

  76. Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 2007; 11: 513–525.

    CAS  PubMed  Google Scholar 

  77. Bea S, Tort F, Pinyol M, Puig X, Hernandez L, Hernandez S et al. BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 2001; 61: 2409–2412.

    CAS  PubMed  Google Scholar 

  78. Sawa M, Yamamoto K, Yokozawa T, Kiyoi H, Hishida A, Kajiguchi T et al. BMI-1 is highly expressed in M0-subtype acute myeloid leukemia. Int J Hematol 2005; 82: 42–47.

    CAS  PubMed  Google Scholar 

  79. Mihara K, Chowdhury M, Nakaju N, Hidani S, Ihara A, Hyodo H et al. Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood 2006; 107: 305–308.

    CAS  PubMed  Google Scholar 

  80. Merkerova M, Bruchova H, Kracmarova A, Klamova H, Brdicka R . Bmi-1 over-expression plays a secondary role in chronic myeloid leukemia transformation. Leuk Lymphoma 2007; 48: 793–801.

    CAS  PubMed  Google Scholar 

  81. Chowdhury M, Mihara K, Yasunaga S, Ohtaki M, Takihara Y, Kimura A . Expression of polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia 2007; 21: 1116–1122.

    CAS  PubMed  Google Scholar 

  82. Mohty M, Szydlo RM, Yong AS, Apperley JF, Goldman JM, Melo JV . Association between BMI-1 expression, acute graft-versus-host disease, and outcome following allogeneic stem cell transplantation from HLA-identical siblings in chronic myeloid leukemia. Blood 2008; 112: 2163–2166.

    CAS  PubMed  Google Scholar 

  83. Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 2002; 16: 1518–1527.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. van Leeuwen F, Gafken PR, Gottschling DE . Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002; 109: 745–756.

    CAS  PubMed  Google Scholar 

  85. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    CAS  PubMed  Google Scholar 

  86. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445–4454.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bitoun E, Oliver PL, Davies KE . The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007; 16: 92–106.

    CAS  PubMed  Google Scholar 

  88. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445–4454.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zeisig DT, Bittner CB, Zeisig BB, Garcia-Cuellar MP, Hess JL, Slany RK . The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene 2005; 24: 5525–5532.

    CAS  PubMed  Google Scholar 

  90. Zhang W, Xia X, Reisenauer MR, Hemenway CS, Kone BC . Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem 2006; 281: 18059–18068.

    CAS  PubMed  Google Scholar 

  91. Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 2004; 18: 1263–1271.

    PubMed  PubMed Central  Google Scholar 

  92. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 2008; 28: 2825–2839.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fang J, Feng Q, Ketel CS, Wang H, Cao R, Xia L et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol 2002; 12: 1086–1099.

    CAS  PubMed  Google Scholar 

  94. Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 2002; 9: 1201–1213.

    CAS  PubMed  Google Scholar 

  95. Greeson NT, Sengupta R, Arida AR, Jenuwein T, Sanders SL . Di-methyl H4 Lysine 20 Targets the Checkpoint Protein Crb2 to Sites of DNA Damage. J Biol Chem 2008; 283: 33168–33174.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18: 1251–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marango J, Shimoyama M, Nishio H, Meyer JA, Min DJ, Sirulnik A et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 2008; 111: 3145–3154.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941–953.

    CAS  PubMed  Google Scholar 

  99. Cloos PA, Christensen J, Agger K, Helin K . Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 2008; 22: 1115–1140.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 2006; 442: 307–311.

    CAS  PubMed  Google Scholar 

  101. Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 2007; 128: 889–900.

    CAS  PubMed  Google Scholar 

  102. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290: 2306–2309.

    CAS  PubMed  Google Scholar 

  103. Lieb JD, Liu X, Botstein D, Brown PO . Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 2001; 28: 327–334.

    CAS  PubMed  Google Scholar 

  104. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . A global transcriptional regulatory role for c-Myc in Burkitt′s lymphoma cells. Proc Natl Acad Sci USA 2003; 100: 8164–8169.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 2006; 125: 301–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441: 349–353.

    CAS  PubMed  Google Scholar 

  108. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20: 1123–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 2007; 1: 286–298.

    CAS  PubMed  Google Scholar 

  110. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 2007; 1: 299–312.

    CAS  PubMed  Google Scholar 

  111. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448: 553–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 2008; 4: e1000242.

    PubMed  PubMed Central  Google Scholar 

  113. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA . A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007; 130: 77–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Attema JL, Papathanasiou P, Forsberg EC, Xu J, Smale ST, Weissman IL . Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci USA 2007; 104: 12371–12376.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 2009; 4: 80–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874.

    CAS  PubMed  Google Scholar 

  117. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. Epigenetic stem cell signature in cancer. Nat Genet 2007; 39: 157–158.

    CAS  PubMed  Google Scholar 

  118. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007; 39: 232–236.

    CAS  PubMed  Google Scholar 

  119. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008; 40: 741–750.

    CAS  PubMed  Google Scholar 

  120. Figueroa ME, Reimers M, Thompson RF, Ye K, Li Y, Selzer RR et al. An integrative genomic and epigenomic approach for the study of transcriptional regulation. PLoS ONE 2008; 3: e1882.

    PubMed  PubMed Central  Google Scholar 

  121. Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 2008; 22: 3403–3408.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Cheung N, Chan LC, Thompson A, Cleary ML, So CW . Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 2007; 9: 1208–1215.

    CAS  PubMed  Google Scholar 

  124. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    CAS  PubMed  Google Scholar 

  125. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 2007; 25: 473–481.

    CAS  PubMed  Google Scholar 

  127. Shaaban SA, Bedford MT . Reprogramming the histone code. Chem Biol 2007; 14: 242–244.

    CAS  PubMed  Google Scholar 

  128. Bhalla KN . Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 2005; 23: 3971–3993.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neff, T., Armstrong, S. Chromatin maps, histone modifications and leukemia. Leukemia 23, 1243–1251 (2009). https://doi.org/10.1038/leu.2009.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.40

Keywords

This article is cited by

Search

Quick links