Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Immunology

CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets

Abstract

The activation of natural killer (NK) cells leads to degranulation and secretion of cytotoxic granula. During this process, the lytic granule membrane protein CD107a becomes detectable at the cell surface. Based on this phenomenon, we have analyzed by a novel flow cytometry-based assay, the number and phenotype of NK cells responding to tumor targets. Using human leukemia and lymphoma cell lines, we observed a close correlation between CD107a surface expression and target cell lysis, indicating that NK cell cytotoxicity can be assessed by this method. The number of degranulating NK cells was closely related to the ratio of effector and target cells and showed a maximum at a ratio of 1:1. Moreover, we were able to show that the population of CD56dim/CD16neg NK cells is primarily responsible for the cytotoxic activity against tumor targets whereas neither CD56dim/CD16pos nor CD56bright NK cells degranulated in response to the cell lines. Our results indicate that the CD107a assay represents a promising new method for the quantification and characterization of cells exhibiting natural cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M et al. CD56 bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 2003; 101: 3052–3057.

    Article  CAS  PubMed  Google Scholar 

  2. Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 2004; 172: 1455–1462.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    Article  CAS  PubMed  Google Scholar 

  4. Ferlazzo G, Munz C . NK cell compartments and their activation by dendritic cells. J Immunol 2004; 172: 1333–1339.

    Article  CAS  PubMed  Google Scholar 

  5. Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 1991; 173: 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  6. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003; 281: 65–78.

    Article  CAS  PubMed  Google Scholar 

  7. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9: 1377–1382.

    Article  CAS  PubMed  Google Scholar 

  8. Wolint P, Betts MR, Koup RA, Oxenius A . Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells. J Exp Med 2004; 199: 925–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bossi G, Griffiths GM . Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 1999; 5: 90–96.

    Article  CAS  PubMed  Google Scholar 

  10. Kannan K, Stewart RM, Bounds W, Carlsson SR, Fukuda M, Betzing KW et al. Lysosome-associated membrane proteins h-LAMP1 (CD107a) and h-LAMP2 (CD107b) are activation-dependent cell surface glycoproteins in human peripheral blood mononuclear cells which mediate cell adhesion to vascular endothelium. Cell Immunol 1996; 171: 10–19.

    Article  CAS  PubMed  Google Scholar 

  11. Alter G, Malenfant JM, Delabre RM, Burgett NC, Yu XG, Lichterfeld M et al. Increased natural killer cell activity in viremic HIV-1 infection. J Immunol 2004; 173: 5305–5311.

    Article  CAS  PubMed  Google Scholar 

  12. Martin P, Papayannopoulou T . HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 1982; 216: 1233–1235.

    Article  CAS  PubMed  Google Scholar 

  13. Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S et al. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 1979; 54: 713–733.

    CAS  PubMed  Google Scholar 

  14. Lozzio BB, Lozzio CB . Properties of the K562 cell line derived from a patient with chronic myeloid leukemia. Int J Cancer 1977; 19: 136.

    Article  CAS  PubMed  Google Scholar 

  15. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 1991; 77: 2031–2036.

    CAS  PubMed  Google Scholar 

  16. Ohyashiki K, Ohyashiki JH, Sandberg AA . Cytogenetic characterization of putative human myeloblastic leukemia cell lines (ML-1, -2, and -3): origin of the cells. Cancer Res 1986; 46: 3642–3647.

    CAS  PubMed  Google Scholar 

  17. Saltman D, Bansal NS, Ross FM, Ross JA, Turner G, Guy K . Establishment of a karyotypically normal B-chronic lymphocytic leukemia cell line; evidence of leukemic origin by immunoglobulin gene rearrangement. Leuk Res 1990; 14: 381–387.

    Article  CAS  PubMed  Google Scholar 

  18. Jadayel DM, Lukas J, Nacheva E, Bartkova J, Stranks G, De Schouwer PJ et al. Potential role for concurrent abnormalities of the cyclin D1, p16CDKN2 and p15CDKN2B genes in certain B cell non-Hodgkin's lymphomas. Functional studies in a cell line (Granta 519). Leukemia 1997; 11: 64–72.

    Article  CAS  PubMed  Google Scholar 

  19. Jeon HJ, Kim CW, Yoshino T, Akagi T . Establishment and characterization of a mantle cell lymphoma cell line. Br J Haematol 1998; 102: 1323–1326.

    Article  CAS  PubMed  Google Scholar 

  20. Dyer MJ, Fischer P, Nacheva E, Labastide W, Karpas A . A new human B-cell non-Hodgkin's lymphoma cell line (Karpas 422) exhibiting both t(14;18) and t(4;11) chromosomal translocations. Blood 1990; 75: 709–714.

    CAS  PubMed  Google Scholar 

  21. Falk CS, Noessner E, Weiss EH, Schendel DJ . Retaliation against tumor cells showing aberrant HLA expression using lymphokine activated killer-derived T cells. Cancer Res 2002; 62: 480–487.

    CAS  PubMed  Google Scholar 

  22. Mattis AE, Bernhardt G, Lipp M, Forster R . Analyzing cytotoxic T lymphocyte activity: a simple and reliable flow cytometry-based assay. J Immunol Methods 1997; 204: 135–142.

    Article  CAS  PubMed  Google Scholar 

  23. Brunner KT, Mauel J, Cerottini JC, Chapuis B . Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 1968; 14: 181–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheehy ME, McDermott AB, Furlan SN, Klenerman P, Nixon DF . A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods 2001; 249: 99–110.

    Article  CAS  PubMed  Google Scholar 

  25. Godoy-Ramirez K, Franck K, Gaines H . A novel method for the simultaneous assessment of natural killer cell conjugate formation and cytotoxicity at the single-cell level by multi-parameter flow cytometry. J Immunol Methods 2000; 239: 35–44.

    Article  CAS  PubMed  Google Scholar 

  26. Letsch A, Scheibenbogen C . Quantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine staining. Methods 2003; 31: 143–149.

    Article  CAS  PubMed  Google Scholar 

  27. Nagler A, Lanier L, Cwirla S, Phillips J . Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 1989; 143: 3183–3191.

    CAS  PubMed  Google Scholar 

  28. Möller M, Kammerer R, Von Kleist S . A distinct distribution of natural killer cell subgroups in human tissues and blood. Int J Cancer 1998; 78: 533–538.

    Article  PubMed  Google Scholar 

  29. Jacobs R, Stoll M, Stratmann G, Leo R, Link H, Schmidt RE . CD16−CD56+ natural killer cells after bone marrow transplantation. Blood 1992; 79: 3239–3244.

    CAS  PubMed  Google Scholar 

  30. Nagler A, Rabinowitz R, Rosengolts-Rat J, Condiotti R, Schlesinger M . Natural killer (NK) and T cell-associated surface marker expression following allogeneic and autologous bone marrow transplantation (BMT). J Hematother Stem Cell Res 2000; 9: 63–75.

    Article  CAS  PubMed  Google Scholar 

  31. Schubert J, Heiken H, Jacobs R, Delany P, Witte T, Schmidt RE . A subset of CD16- natural killer cells without antibody-dependent cellular cytotoxicity function. Nat Immun Cell Growth Regul 1990; 9: 103–111.

    CAS  PubMed  Google Scholar 

  32. Tanaka H, Kai S, Yamaguchi M, Misawa M, Fujimori Y, Yamamoto M et al. Analysis of natural killer (NK) cell activity and adhesion molecules on NK cells from umbilical cord blood. Eur J Haematol 2003; 71: 29–38.

    Article  CAS  PubMed  Google Scholar 

  33. Vitale C, Ciossone L, Morreale G, Lanino E, Cottalasso F, Moretti S et al. Analysis of the activating receptors and cytolytic function of human natural killer cells undergoing in vivo differentiation after allogeneic bone marrow transplantation. Eur J Immunol 2004; 34: 455–460.

    Article  CAS  PubMed  Google Scholar 

  34. Warren HS, Skipsey LJ . Phenotypic analysis of a resting subpopulation of human peripheral blood NK cells: the FcR gamma III (CD16) melecule and NK cell differentiation. Immunology 1991; 72: 150–157.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Penack.

Additional information

This work was supported by a grant of the Deutsche Krebshilfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penack, O., Gentilini, C., Fischer, L. et al. CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets. Leukemia 19, 835–840 (2005). https://doi.org/10.1038/sj.leu.2403704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403704

Keywords

This article is cited by

Search

Quick links