Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Factors affecting the quality of bottled water

Abstract

The ever-increasing popularity of bottled water means that it is important to analyze not only its mineral content but also, above all, its content of possible contaminants, especially the organic ones. In this respect, bottled waters are a special case, because apart from organic chemical contaminants derived from the well from which they were acquired, their secondary contamination is always possible, during treatment or storage or transport in unsuitable conditions (sunlight and elevated temperature). This paper describes how various factors, from the area around the well, and the method of drawing and treating water, to the manner in which the finished product is stored and transported may affect the quality of bottled waters. It also summarizes literature information on the levels of organic contaminants in various kinds of bottled water samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. WW (World’s Water). 2010. Per capita bottled water consumption by top countries. Available from: http://www.worldwater.org/datav7/data_table_19_per_capita_bottled_water_by_country.pdf. Accessed October 2011.

  2. de Beaufort ID . The camel syndrome. J Public Health 2007; 15: 407–412.

    Article  Google Scholar 

  3. Yekdeli Kermanshahi K, Tataraki R, Karimi H, Nikorazm M, Abbasi S . Classification of Iranian bottled waters as indicated by manufacturer’s labellings. Food Chem 2010; 120: 1218–1223.

    Article  CAS  Google Scholar 

  4. Casajuana N, Lacorte N . Presence and release of phthalic esters and other endocrine disrupting compounds in drinking water. Chromatographia 2003; 57: 649–655.

    Article  CAS  Google Scholar 

  5. Garcıa RS, Silva AS, Cooper I, Franz R, Losada PP . Revision of analytical strategies to evaluate different migrants from food packaging materials. Trends Food Sci Technol 2006; 17: 354–366.

    Article  Google Scholar 

  6. Silva AS, Garcıa RS, Cooper I, Franz R, Losada PP . Compilation of analytical methods and guidelines for the determination of selected model migrants from plastic packaging. Trends Food Sci Techno 2006; 17: 535–546.

    Article  CAS  Google Scholar 

  7. Leivadara SV, Nikolaou AD, Lekkas TD . Determination of organic compounds in bottled waters. Food Chem 2008; 108: 277–286.

    Article  CAS  Google Scholar 

  8. Sax L . Polyethylene terephthalate may yield endocrine disruptors. Environ Health Perspect 2010; 118: 445–448.

    Article  CAS  Google Scholar 

  9. Dziecioł M, Trzeszczynski J . Volatile products of poly(ethylene terephthalate) thermal degradation in nitrogen atmosphere. J Appl Polymer Sci 2000; 77: 1894–1901.

    Article  Google Scholar 

  10. Wegelin M, Canonica S, Alder AC, Marazuela D, Suter M J-F, Bucheli Th D et al Does sunlight change the material and content of polyethylene terephthalate (PET) bottles? J Water Supp Res Technol 2001; 50.3: 125–133.

    Article  Google Scholar 

  11. Schmid P, Kohler M, Meierhofer R, Luzi S, Wegelin M . Does the reuse of PET bottles during solar water disinfection pose a health risk due to the migration of plasticisers and other chemicals into the water?. Water Res 2008; 42: 5054–5060.

    Article  CAS  Google Scholar 

  12. WHO (World Health Organization). 2008. Draft third edition of the WHO guidelines for drinking—water quality. Available from: http://www.who.int/water_sanitation_health/dwq/fulltext.pdf. Accessed November 2011.

  13. EEC. Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the exploitation and marketing of natural mineral waters. Official Journal L 146/45 2009 26/06/2009.

  14. FDA (Food and Drug Administration). 2010. Requirements for specific standardized beverages, Sec. 165.110 Bottled water. Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=165.110&st=drinking%20water . Accessed November 2011.

  15. IBWA (International Bottled Water Association). 2009. Model bottled water regulation. Available from: http://www.bottledwater.org/files/IBWA%20Code%20of%20Practice%20Updated%202009%20Final_3.pdf . Accessed November 2011.

  16. EPA Environmental Protection Agency. 2009. Current drinking water standards. Available from: http://water.epa.gov/drink/contaminants/index.cfm . Accessed November 2011.

  17. Petraccia L, Liberati G, Masciullo SG, Grassi M, Fraioli A . Water mineral waters and health. Clin Nutr 2006; 25: 377–385.

    Article  CAS  Google Scholar 

  18. Ericson I, Nadal M, van Bavel B, Lindström G, Domingo JL . Levels of perfluorochemicals in water samples from Catalonia, Spain: is drinking water a significant contribution to human exposure? Environ Sci Poll Res 2008; 15: 614–619.

    Article  CAS  Google Scholar 

  19. Font-Ribera L, Kogevinas M, Nieuwenhuijsen MJ, Grimalt JO, Villanueva CM . Patterns of water use and exposure to trihalomethanes among children in Spain. Environ Res 2010; 110: 571–579.

    Article  CAS  Google Scholar 

  20. Nawrocki J, Dąbrowska A, Borcz A . Investigation of carbonyl compounds in bottled waters from Poland. Water Res 2002; 36: 4893–4901.

    Article  CAS  Google Scholar 

  21. Kruawal K, Sacher F, Werner A, Müller J, Knepper TP . Chemical water quality in Thailand and its impacts on the drinking water production in Thailand. Sci Total Environ 2005; 340: 57–70.

    Article  CAS  Google Scholar 

  22. Kohler M, Wolfensberger M . Migration of organic components from polyethylene terephthalate (PET) bottles to water. EMPA, Swiss Federal Laboratories for Materials Testing and Research 2003; 82: 2–13.

    Google Scholar 

  23. Al-Mudhaf HF, Alsharif FA, Aby-Shady AS . A survey of organic contaminants in household and bottled drinking waters in Kuwait. Sci Total Environ 2009; 407: 1658–1668.

    Article  CAS  Google Scholar 

  24. Salinas RO, Bermudez BS, Tolentino RG, Gonzalez GD, Vega y León S . Presence of polychlorinated biphenyls (PCBs) in bottled drinking water in Mexico City. Bull Environ Contam Toxicol 2010; 85: 372–376.

    Article  CAS  Google Scholar 

  25. Diaz G, Ortiz R, Schettino B, Vega S, Gutierrez R . Organochlorine pesticides residues in bottled drinking water from Mexico City. Bull Environ Contam Toxicol 2009; 82: 701–704.

    Article  CAS  Google Scholar 

  26. Liu Y, Mou S . Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography. Microchem J 2003; 75: 79–86.

    Article  CAS  Google Scholar 

  27. Liu Y, Mou S . Determination of bromate and chlorinated haloacetic acids in bottled drinking water with chromatographic methods. Chemosphere 2004; 55: 1253–1258.

    Article  CAS  Google Scholar 

  28. Reimann C, Banks D . Setting action levels for drinking water: are we protecting our health or our economy (or our backs!)? Sci Total Environ 2004; 332: 13–21.

    Article  CAS  Google Scholar 

  29. Ikem A . Measurement of volatile organic compounds in bottled and tap waters by purge and trap GC—MC: are drinking water types different? J Food Comp Anal 2010; 23: 70–77.

    Article  CAS  Google Scholar 

  30. Longnecker K, Kujwinski EB . Composition of dissolved organic matter in groundwater. Geochim Cosmochim Acta 2007; 75: 2752–2761.

    Article  Google Scholar 

  31. Srinivasan R, Serial GE . Treatment of taste and odor causing compounds 2-methyl isoborneol and geosomin in drinking water: a critical review. J Environ Sci 2011; 23: 1–13.

    Article  CAS  Google Scholar 

  32. Ritter L, Solomon K, Sibley P, Hall K, Keen P, Mattu G et al Sources, pathways, and relative risk of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. J Toxicol Environ Health, Part A 2002; 65: 1–142.

    Article  CAS  Google Scholar 

  33. Greulich K, Alder L . Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Anal Bioanal Chem 2008; 391: 183–197.

    Article  CAS  Google Scholar 

  34. Bono-Blay F, Guart A, de la Fuente B, Pedemonte M, Cinta Pastor M, Borrell A et al Survey of phthalates, alkylphenols, bisphenol A and herbicides in Spanish source waters intended for bottling. Environ Sci Poll Res 2012; 19: 3339–3349.

    Article  CAS  Google Scholar 

  35. Diduch M, Polkowska Ż, Namieśnik J . Chemical quality of bottled water: a review. J Food Sci 2011; 76: 178–196.

    Article  Google Scholar 

  36. Suffet IH, Khiari D, Bruchet A . The drinking water taste and odor wheel for the millennium: beyond gesomin and 2-methylisoborneol. Wat Sci Tech 1999; 40: 1–13.

    Article  CAS  Google Scholar 

  37. Salemi A, Lacorte Bruguera S, Bagheri H, Barceló D . Automated trace determination of earthy-musty odorous compounds in water samples by on-line purge-and-trap-gas chromatography-mass spectrometry. J Chromatogr A 2006; 1136: 170–175.

    Article  CAS  Google Scholar 

  38. WHO (World Health Organization). 2009. Pesticides in drinking water. WHO Seminar Pack for drinking-water quality, in revision. Available from: http://whqlibdoc.who.int/hq/2009/WHO_HSE_WSH_09.05_eng.pdf. Accessed November 2011.

  39. Wilson C, Tisdell C . Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 2001; 39: 449–462.

    Article  Google Scholar 

  40. Żychowski J, Lach J, Kolber M . The differentiation of glycine, leucine and isoleucine contents in the ground water near cemetaries located over different bedrock. State and Anthropogenic Changes of Water Quality in Poland 2005; III: 281–290.

    Google Scholar 

  41. Żychowski J . The effects of mass graves on the content of selected organic compounds in groundwater. State and Anthropogenic Changes of Water Quality in Poland 2007; V: 359–366.

    Google Scholar 

  42. Senior D, Dege N . Technology of Bottled Water. Blackwell Publishing Oxford, UK. 2005.

    Google Scholar 

  43. Biscardi D, Monarca S, De Fusco R, Senatore F, Poli P, Buschini A et al Evaluation of the migration of mutagens/carcinogens from PET bottles into mineral water by Tradescantia/micronuclei test, Comet assay on leukocytes and GC/MS. Sci Total Environ 2003; 302: 101–108.

    Article  CAS  Google Scholar 

  44. Wang W, Ye B, Yang L, Li Y, Wang Y . Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes. Environ Int 2007; 33: 219–225.

    Article  CAS  Google Scholar 

  45. Ikem A, Odueyungbo S, Egiebor NO, Nyavor K . Chemical quality of bottled waters from three cities in eastern Alabama. Sci Total Environ 2002; 285: 165–175.

    Article  CAS  Google Scholar 

  46. Song YS, Al-Taherz F, Sadle G . Migration of volatile degradation products into ozonated water from plastic packaging materials. Food Add Cont 2003; 10: 985–994.

    Article  Google Scholar 

  47. Tyrovola K, Diamadopoulos E . Bromate formation during ozonation of groundwater in coastal areas in Greece. Destilation 2005; 176: 201–209.

    CAS  Google Scholar 

  48. Aljundi IH . Bromate formation during ozonation of drinking water: a response surface methodology study. Destilation 2011; 277: 24–28.

    CAS  Google Scholar 

  49. Huang W, Fang G, Wang C . The determination and fate of disinfection by-products from ozonation of polluted raw water. Sci Total Environ 2005; 345: 261–272.

    Article  CAS  Google Scholar 

  50. Monarca S, De Fusco R, Biscardi D, De Feo V, Pasquini R, Fatigoni C et al Studies of migration of potentially genotoxic compounds into water stored in pet bottles. Food Chem Toxicol 1994; 32: 783–788.

    Article  CAS  Google Scholar 

  51. Morrison ED, Malvey MW, Johnson RD, Anacker JL, Brown KA . Effect of chemical environments on stress cracking of poly(ethylene terephthalate) beverage bottles. Polym Test 2008; 27: 660–666.

    Article  CAS  Google Scholar 

  52. ILSI (International Life Sciences Institute). Polyethylene terephthalate (PET) for food packaging applications: Report. 2000.

  53. Ceretti E, Zani C, Zerbibi I, Guzzella L, Scaglia M, Berna V et al Comparative assessment of genotoxicity of mineral water packed in polyethylene terephthalate (PET) and glass bottles. Water Res 2010; 44: 1462–1470.

    Article  CAS  Google Scholar 

  54. ECC. Council Directive 89/109/EEC of 21 December 1988 on the approximation of the laws of the Member States relating to materials and articles intended to come into contact with foodstuffs. Official Journal 40/38, 11.02.1989 1989.

  55. Dąbrowska A, Borcz A, Nawrocki J . Aldehyde contamination of mineral water stored in PET bottles. Food Add Contam 2003; 20: 1170–1177.

    Article  Google Scholar 

  56. Reimann C, Birke M, Filzmoser P . Bottled drinking water contamination from bottle materials (glass, hard PEt, soft PET), the influence of color and acidification. Appl Geochem 2010; 25: 1030–1046.

    Article  CAS  Google Scholar 

  57. Muncke J . Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source? Sci Total Environ 2009; 407 (16): 4549–4559.

    Article  CAS  Google Scholar 

  58. Muncke J . Endocrine disrupting chemicals and other substances of concern in food contact materials: an updated review of exposure, effect and risk assessment. J Steroid Biochem Mol Biol 2011; 127: 118–127.

    Article  CAS  Google Scholar 

  59. Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD . Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 2011; 119: 989–996.

    Article  CAS  Google Scholar 

  60. Plotan M, Frizzell C, Robinson V, Elliott CT, Connolly L . Endocrine disruptor activity in bottled mineral and flavoured water. Food Chem 2012 (in press), doi:10.1016/j.foodchem.2012.1001.1115.

  61. Wagner M, Oehlmann J . Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Poll Res 2009; 16: 278–286.

    Article  CAS  Google Scholar 

  62. Wagner M, Oehlmann J . Endocrine disruptors in bottled mineral water: estrogenic activity in the E-Screen. J Steroid Biochem Mol Biol 2011; 127: 128–135.

    Article  CAS  Google Scholar 

  63. Pinto B, Reali D . Screening of estrogen-like activity of mineral water stored in PET bottles. Int J Hygiene Environ Health 2009; 212: 228–232.

    Article  CAS  Google Scholar 

  64. Guart A, Bono-Blay F, Borrell A, Lacorte S . Migration of plasticizers phthalates, bisphenol A and alkylphenols from plastic containers and evaluation of risk. Food Add Cont 2011; 28: 676–685.

    Article  CAS  Google Scholar 

  65. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM et al Endocrine-disrupting chemicals: an endocrine society scientific statement. Endo Rev 2009; 30: 293–342.

    Article  CAS  Google Scholar 

  66. Duh B . Effect of antimony catalyst on solid-state polycondensation of poly(ethylene terephthalate). Polymer 2002; 43: 3147–3154.

    Article  CAS  Google Scholar 

  67. Ahmad M, Bajahlan AS . Quality comparison of tap waters vs. bottled water in the industrial city of Yanbu (Saudi Arabia). Environ Monit Asses 2009; 159: 1–14.

    Article  CAS  Google Scholar 

  68. Rusz Hansen H, Pergantis SA . Detection of antimony species in citrus juices and drinking water stored in PET containers. J Anal Spectrom 2006; 21: 731–733.

    Article  Google Scholar 

  69. Takahashi Y, Sakuma K, Itai T, Zheng G, Mitsunobu S . Speciation of antimony in PET bottles produced in Japan and China by X-ray absorption fine structure spectroscopy. Environ Sci Technol 2008; 42: 9045–9050.

    Article  CAS  Google Scholar 

  70. Shotyk W, Krachler M . Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increase upon storage. Environ Sci Technol 2007; 41: 1560–1563.

    Article  CAS  Google Scholar 

  71. Shotyk W, Krachler M, Chen B . Contamination of Canadian and European bottled waters with antimony leaching from PET containers. J Environ Monit 2006; 8: 288–292.

    Article  CAS  Google Scholar 

  72. Güler C . Characterization of Turkish bottled waters using pattern recognition methods. Chemom Intell Lab Syst 2007; 86: 86–94.

    Article  Google Scholar 

  73. Keresztes S, Tatar E, Miaucz VG, Viagr I, Majdik C, Zaray G . Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water. Sci Total Environ 2009; 407: 4731–4735.

    Article  CAS  Google Scholar 

  74. Andra SS, Makris KC, Shine JP, Lu C . Co-leaching of brominated compounds and antimony from bottled water. Environ Inter 2012; 38: 45–53.

    Article  CAS  Google Scholar 

  75. Westerhoff P, Prapaipong P, Shock P, Hillaireau A . Leaching of antimony from polyethylene terephthalate (PET) plastic using for bottled drinking water. Water Res 2008; 42: 551–556.

    Article  CAS  Google Scholar 

  76. Suzuki J, Katsuki Y, Ogawa H, Suzuki K, Matsumoto H, Yasuda K . Concentration of trace elements in bottled drinking water. J Food Hyg Soc Japan 2000; 41: 387–96.

    Article  CAS  Google Scholar 

  77. De Fusco R, Monarca S, Biscardi D, Pasquini R, Fatigoni C . Leaching of mutagens into mineral water from polyethyleneterephthalate bottles. Sci Total Environ 1990; 90: 241–248.

    Article  CAS  Google Scholar 

  78. Glas Water Available from: http://www.glaswater.com/ . Accessed November, 2011.

  79. Shotyk W, Krachler M . Lead in bottled waters: contamination from glass and comparison with pristine groundwater. Environ Sci Technol 2007; 41: 3508–3513.

    Article  CAS  Google Scholar 

  80. Mutsuga M, Kawamura Y, Suita-Konishi Y, Hara-Kudo Y, Takatori K, Tanamoto K . Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food Add Cont 2006; 23: 212–218.

    Article  CAS  Google Scholar 

  81. Li X, Ying G-G, Su H-C, Yang X-B, Wang L . Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ Intern 2006; 36: 557–562.

    Article  Google Scholar 

  82. Amiridou D, Dimitra V . Alkylphenols and phthalates in bottled waters. J Hazard Mater 2011; 185: 281–286.

    Article  CAS  Google Scholar 

  83. Signorile G, Neve A, Lugoli F, Piccinni MC, di Marino R . Evaluation of toxic chemical parameters and ecotoxicity levels in bottled mineral waters. J Prev Med Hyg 2007; 48: 10–16.

    CAS  PubMed  Google Scholar 

  84. Prokupkova G, Holadova K, Poustka J, Hajslova J . Development of a solid-phase microextraction method for the determination of phthalic acid esters in water. Anal Chim Acta 2002; 457: 211–223.

    Article  CAS  Google Scholar 

  85. Wu S-Y, Xu Q, Chen T-S, Wang M, Yin X-Y, Zhang N-P et al Determination of bisphenol A in plastic bottled drinking water by high performance liquid chromatography with solid-membrane extraction based on electrospun nylon 6 nanofibrous membrane. Chin J Anal Chem 2010; 38: 503–507.

    Article  CAS  Google Scholar 

  86. Loyo-Rosales JE, Rosales-Riviera GC, Lynch AM, Rice CP, Torrens A . Migration of nonylphenol from plastic containers to water and a milk surrogate. J Agric Food Chem 2004; 52: 2016–202.

    Article  CAS  Google Scholar 

  87. Tombesi NB, Freije H . Application of solid-phase microextraction combined with gas chromatography-mass spectrometry to the determination of butylated hydroxytoluene in bottled drinking water. J Chromatogr A 2002; 963: 179–183.

    Article  CAS  Google Scholar 

  88. Saleh MA, Ewane E, Jones J, Wilson B . Chemical evaluation of commercial bottled drinking water from Egypt. J Food Compos Anal 2001; 14: 127–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a scholarship for PhD students — MISTRZ programme, Warsaw, 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malwina Diduch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diduch, M., Polkowska, Ż. & Namieśnik, J. Factors affecting the quality of bottled water. J Expo Sci Environ Epidemiol 23, 111–119 (2013). https://doi.org/10.1038/jes.2012.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.101

Keywords

This article is cited by

Search

Quick links