Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene transfer of arginine kinase to skeletal muscle using adeno-associated virus

Abstract

In this study, we tested the feasibility of non-invasively measuring phosphoarginine (PArg) after gene delivery of arginine kinase (AK) using an adeno-associated virus (AAV) to murine hindlimbs. This was achieved by evaluating the time course, regional distribution and metabolic flux of PArg using 31phosphorus magnetic resonance spectroscopy (31P-MRS). AK gene was injected into the gastrocnemius of the left hindlimb of C57Bl10 mice (age 5 weeks, male) using self-complementary AAV, type 2/8 with desmin promoter. Non-localized 31P-MRS data were acquired over 9 months after injection using 11.1-T and 17.6-T Bruker Avance spectrometers. In addition, 31P two-dimensional chemical shift imaging and saturation transfer experiments were performed to examine the spatial distribution and metabolic flux of PArg, respectively. PArg was evident in each injected mouse hindlimb after gene delivery, increased until 28 weeks, and remained elevated for at least 9 months (P<0.05). Furthermore, PArg was primarily localized to the injected posterior hindimb region and the metabolite was in exchange with ATP. Overall, the results show the viability of AAV gene transfer of AK gene to skeletal muscle, and provide support of PArg as a reporter that can be used to non-invasively monitor the transduction of genes for therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mendell JR, Rodino-Klapac LR, Rosales XQ, Coley BD, Galloway G, Lewis S et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann Neurol 2010; 68: 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Z, Storb R, Halbert CL, Banks GB, Butts TM, Finn EE et al. Successful regional delivery and long-term expression of a dystrophin gene in canine muscular dystrophy: a preclinical model for human therapies. Mol Ther 2012; 20: 1501–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haecker SE, Stedman HH, Balice-Gordon RJ, Smith DBJ, Greelish JP, Mitchell MA et al. In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes. Hum Gene Ther 1996; 7: 1907–1914.

    Article  CAS  PubMed  Google Scholar 

  4. Weissleder R, Ntziachristos V . Shedding light onto live molecular targets. Nat Med 2003; 9: 123–128.

    Article  CAS  PubMed  Google Scholar 

  5. Tangney M, Francis KP . In vivo optical imaging in gene & cell therapy. Curr Gene Ther 2012; 12: 2–11.

    Article  CAS  PubMed  Google Scholar 

  6. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999; 96: 2333–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilad AA, Ziv K, McMahon MT, van Zijl PCM, Neeman M, Bulte JWM . MRI Reporter Genes. J Nucl Med 2008; 49: 1905–1908.

    Article  CAS  PubMed  Google Scholar 

  8. Iordanova B, Goins WF, Clawson DS, Hitchens TK, Ahrens ET . Quantification of HSV-1-mediated expression of the ferritin MRI reporter in the mouse brain. Gene Ther 2012; 20: 589–596.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sherry AD, Woods M . Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng 2008; 10: 391–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koretsky AP, Brosnan MJ, Chen LH, Chen JD, Van Dyke T . NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci USA 1990; 87: 3112–3116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Z, Qiao H, Lebherz C, Choi SR, Zhou X, Gao G et al. Creatine kinase, a magnetic resonance-detectable marker gene for quantification of liver-directed gene transfer. Hum Gene Ther 2005; 16: 1429.

    Article  CAS  PubMed  Google Scholar 

  12. Auricchio A, Zhou R, Wilson JM, Glickson JD . In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc Natl Acad Sci USA 2001; 98: 5205–5210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walter G, Barton ER, Sweeney HL . Noninvasive measurement of gene expression in skeletal muscle. Proc Natl Acad Sci USA 2000; 97: 5151–5155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rabinowitz JE, Samulski J . Adeno-associated virus expression systems for gene transfer. Curr Opin Biotechnol 1998; 9: 470–475.

    Article  CAS  PubMed  Google Scholar 

  15. Konieczny P, Swiderski K, Chamberlain JS . Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 2013; 47: 649–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gruntman AM, Bish LT, Mueller C, Sweeney HL, Flotte TR, Gao G . Gene transfer in skeletal and cardiac muscle using recombinant adeno-associated virus. Curr Protoc Microbiol 2013; Chapter 1 (Unit 14D).

  18. Uda K, Ellington WR, Suzuki T . A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution. Gene 2012; 497: 214–227.

    Article  CAS  PubMed  Google Scholar 

  19. Ellington W . Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J Exp Biol 1989; 143: 177–194.

    CAS  PubMed  Google Scholar 

  20. From AHL, Ugurbil K . Standard magnetic resonance-based measurements of the P→ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles. Am J Physiol Cell Physiol 2011; 301: C1–C11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiseman RW, Kushmerick MJ . Creatine kinase equilibration follows solution thermodynamics in skeletal muscle. J Biol Chem 1995; 270: 12428–12438.

    Article  CAS  PubMed  Google Scholar 

  22. Annesley TM, Walker JB . Energy metabolism of skeletal muscle containing cyclocreatine phosphate. Delay in onset of rigor mortis and decreased glycogenolysis in response to ischemia or epinephrine. J Biol Chem 1980; 255: 3924–3930.

    CAS  PubMed  Google Scholar 

  23. Osbakken M, Ito K, Zhang D, Ponomarenko I, Ivanics T, Jahngen E et al. Creatine and cyclocreatine effects on ischemic myocardium: 31P nuclear magnetic resonance evaluation of intact heart. Cardiology 1992; 80: 184–195.

    Article  CAS  PubMed  Google Scholar 

  24. Roberts JJ, Walker JB . Feeding a creatine analogue delays ATP depletion and onset of rigor in ischemic heart. Am J Physiol Heart Circ Physiol 1982; 243: H911–H916.

    Article  CAS  Google Scholar 

  25. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 1998; 72: 4212–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Louboutin J-P, Wang L, Wilson JM . Gene transfer into skeletal muscle using novel AAV serotypes. J Gene Med 2005; 7: 442–451.

    Article  CAS  PubMed  Google Scholar 

  27. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  28. Stedman HWJ, Finke R, Kleckner AL, Mendell J . Phase I clinical trial utilizing gene therapy for limb girdle muscular dystrophy: alpha-, beta-, gamma-, or delta-sarcoglycan gene delivered with intramuscular instillations of adeno-associated vectors. Hum Gene Ther 2000; 11: 777–790.

    Article  CAS  PubMed  Google Scholar 

  29. Schnell MA, Zhang Y, Tazelaar J, Gao G-p, Yu QC, Qian R et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3: 708–722.

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Ehlen Haecker S, Su Q, Wilson JM . Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet 1996; 5: 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  31. Bostick B, Ghosh A, Yue Y, Long C, Duan D . Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther 2007; 14: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  32. Katwal AB, Konkalmatt PR, Piras BA, Hazarika S, Li SS, John Lye R et al. Adeno-associated virus serotype 9 efficiently targets ischemic skeletal muscle following systemic delivery. Gene Ther 2013; 20: 930–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koo T, Okada T, Athanasopoulos T, Foster H, Takeda Si, Dickson G . Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog. J Gene Med 2011; 13: 497–506.

    Article  CAS  PubMed  Google Scholar 

  34. Paulin D, Li Z . Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 2004; 301: 1–7.

    Article  CAS  PubMed  Google Scholar 

  35. Pacak C, Sakai Y, Thattaliyath B, Mah C, Byrne B . Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet Vaccines Ther 2008; 6: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Talbot GE, Waddington SN, Bales O, Tchen RC, Antoniou MN . Desmin-regulated lentiviral vectors for skeletal muscle gene transfer. Mol Ther 2010; 18: 601.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang G, Ludtke JJ, Thioudellet C, Kleinpeter P, Antoniou M, Herweijer H et al. Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum Gene Ther 2004; 15: 770.

    Article  CAS  PubMed  Google Scholar 

  38. Palomeque J, Chemaly ER, Colosi P, Wellman JA, Zhou S, del Monte F et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther 2007; 14: 989–997.

    Article  CAS  PubMed  Google Scholar 

  39. Bish LT, Sleeper MM, Brainard B, Cole S, Russell N, Withnall E et al. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 2011; 16: 1953–1959.

    Article  Google Scholar 

  40. McCarty DM . Self-complementary AAV vectors; advances and applications. Mol Ther 2008; 16: 1648–1656.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Ma H-I, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 2003; 10: 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  42. Andino L, Conlon T, Porvasnik S, Boye S, Hauswirth W, Lewin A . Rapid widespread transduction of the murine myocardium using self-complementary Adeno-associated virus. Genet Vaccines Ther 2007; 5: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ye F, Mathur S, Liu M, Borst SE, Walter GA, Sweeney HL et al. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse. Exp Physiol 2013; 98: 1038–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao Q, Patriotis P, Arias-Mendoza F, Stoyanova R, Brown TR . An interactive software for 3D chemical shift imaging data analysis and real time spectral localization and quantification. Proc Int Soc Mag Reson Med 2005; 13: 2465.

    Google Scholar 

  45. Meyer RA, Kushmerick MJ, Brown TR . Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol 1982; 242: C1–C11.

    Article  CAS  PubMed  Google Scholar 

  46. Gupta A, Chacko VP, Schar M, Akki A, Weiss RG . Impaired ATP kinetics in failing in vivo mouse heart. Circ Cardiovasc Imaging 2011; 4: 42–50.

    Article  CAS  PubMed  Google Scholar 

  47. Nabuurs C, Huijbregts B, Wieringa B, Hilbers CW, Heerschap A . 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle. J Biol Chem 2010; 285: 39588–39596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Larsen RG, Befroy DE, Kent-Braun JA . High-intensity interval training increases in vivo oxidative capacity with no effect on Pi→ATP rate in resting human muscle. Am J Physiol Regul Integr Comp Physiol 2013; 304: R333–R342.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health (P01 HL59412 to GAW), Muscular Dystrophy Association Development Grant (175552 to SCF) and the National High Magnetic Field Laboratory. We thank Huadong Zeng, PhD, of the Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) facility in the McKnight Brain Institute of the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S C Forbes or G A Walter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forbes, S., Bish, L., Ye, F. et al. Gene transfer of arginine kinase to skeletal muscle using adeno-associated virus. Gene Ther 21, 387–392 (2014). https://doi.org/10.1038/gt.2014.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.9

This article is cited by

Search

Quick links