Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells

Abstract

Multiple myeloma causes approximately 10% of all hematologic malignancies. We have previously shown that human T cells expressing chimeric NKG2D receptors (chNKG2D) consisting of NKG2D fused to the CD3ζ cytoplasmic domain secrete proinflammatory cytokines and kill human myeloma cells. In this study, we show chNKG2D T cells are effective in a murine model of multiple myeloma. Mice with established 5T33MM–green fluorescent protein tumors were treated with one or two infusions of chNKG2D T cells. Compared with mice treated with T cells expressing wild type (wt)NKG2D receptors, a single dose of chNKG2D T cells increased survival, with half of the chNKG2D T-cell-treated mice surviving long term. Two infusions of chNKG2D T cells led to tumor-free survival in all mice. ChNKG2D T cells were located at sites of tumor growth, including the bone marrow and spleen after intravenous injection. There was an increase in activated host T cells and NK cells at tumor sites and in serum interferon-γ after chNKG2D T-cell injection. Surviving mice were able to resist a rechallenge with 5T33MM cells but not RMA lymphoma cells, indicating that the mice developed a protective, specific memory response. These data demonstrate that chNKG2D T cells may be an effective adoptive cellular therapy for multiple myeloma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Blade J, Bladé J, Rosiñol L, Cibeira MT, Rovira M, Carreras E et al. Hematopoietic stem cell transplantation for multiple myeloma beyond 2010. Blood 2010; 115: 3655–3663.

    Article  CAS  Google Scholar 

  2. Rosenblatt J, Avigan D . Cellular immunotherapy for multiple myeloma. Best Pract Res Clin Haematol 2008; 21: 559–577.

    Article  CAS  Google Scholar 

  3. Chiriva-Internati M, Cobos E, Kast WM . Advances in immunotherapy of multiple myeloma: from the discovery of tumor-associated antigens to clinical trials. Int Rev Immunol 2007; 26: 197–222.

    Article  CAS  Google Scholar 

  4. Harrison SJ, Cook G . Immunotherapy in multiple myeloma--possibility or probability? Br J Haematol 2005; 130: 344–362.

    Article  CAS  Google Scholar 

  5. Choi C, Witzens M, Bucur M, Feuerer M, Sommerfeldt N, Trojan A et al. Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood 2005; 105: 2132–2134.

    Article  CAS  Google Scholar 

  6. Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK et al. Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood 1995; 86: 3043–3049.

    CAS  PubMed  Google Scholar 

  7. van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 2005; 105: 3939–3944.

    Article  CAS  Google Scholar 

  8. Raitakari M, Brown RD, Gibson J, Joshua DE . T cells in myeloma. Hematol Oncol 2003; 21: 33–42.

    Article  CAS  Google Scholar 

  9. Brown RD, Yuen E, Nelson M, Gibson J, Joshua D et al. The prognostic significance of T cell receptor beta gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia 1997; 11: 1312–1317.

    Article  CAS  Google Scholar 

  10. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 2005; 105: 251–258.

    Article  CAS  Google Scholar 

  11. Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C et al. MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res 2005; 65: 7502–7508.

    Article  CAS  Google Scholar 

  12. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW et al. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 2007; 67: 8444–8449.

    Article  CAS  Google Scholar 

  13. Okamoto M, Inaba T, Yamada N, Uchida R, Fuchida SI, Okano A et al. Expression and role of MHC class I-related chain in myeloma cells. Cytotherapy 2006; 8: 509–516.

    Article  CAS  Google Scholar 

  14. Nausch N, Cerwenka A . NKG2D ligands in tumor immunity. Oncogene 2008; 27: 5944–5958.

    Article  CAS  Google Scholar 

  15. Bryceson YT, Ljunggren HG . Tumor cell recognition by the NK cell activating receptor NKG2D. Eur J Immunol 2008; 38: 2957–2961.

    Article  CAS  Google Scholar 

  16. Wu JY, Hill JM, Ernstoff MS, Meehan KR . The critical role of the NKG2D receptor in CD8+ CTL and CD8+CD56+NKT cell cytotoxicity. Blood 2004; 104: 865a.

    Article  Google Scholar 

  17. Alici E, Konstantinidis KV, Sutlu T, Aints A, Gahrton G, Ljunggren HG et al. Anti-myeloma activity of endogenous and adoptively transferred activated natural killer cells in experimental multiple myeloma model. Exp Hematol 2007; 35: 1839–1846.

    Article  CAS  Google Scholar 

  18. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V et al. ATM-ATR dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK cell susceptibility and is associated with a senescent phenotype. Blood 2008; 113: 3503–3511.

    Article  Google Scholar 

  19. Barber A, Zhang T, Megli CJ, Wu J, Meehan KR, Sentman CL et al. Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma. Exp Hematol 2008; 36: 1318–1328.

    Article  CAS  Google Scholar 

  20. Barber A, Zhang T, DeMars LR, Conejo-Garcia J, Roby KF, Sentman CL et al. Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res 2007; 67: 5003–5008.

    Article  CAS  Google Scholar 

  21. Zhang T, Barber A, Sentman CL . Chimeric NKG2D modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways. Cancer Res 2007; 67: 11029–11036.

    Article  CAS  Google Scholar 

  22. Radl J, De Glopper ED, Schuit HR, Zurcher C . Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol 1979; 122: 609–613.

    CAS  PubMed  Google Scholar 

  23. Manning LS, Berger JD, O'Donoghue HL, Sheridan GN, Claringbold PG, Turner JH et al. A model of multiple myeloma: culture of 5T33 murine myeloma cells and evaluation of tumorigenicity in the C57BL/KaLwRij mouse. Br J Cancer 1992; 66: 1088–1093.

    Article  CAS  Google Scholar 

  24. Radl J, Croese JW, Zurcher C, Van den Enden-Vieveen MH, de Leeuw AM et al. Animal model of human disease. Multiple myeloma. Am J Pathol 1988; 132: 593–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Radl J . Age-related monoclonal gammapathies: clinical lessons from the aging C57BL mouse. Immunol Today 1990; 11: 234–236.

    Article  CAS  Google Scholar 

  26. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23: 2346–2357.

    Article  CAS  Google Scholar 

  27. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202: 907–912.

    Article  CAS  Google Scholar 

  28. Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R et al. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat Clin Pract Oncol 2006; 3: 668–681.

    Article  CAS  Google Scholar 

  29. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA et al. Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 2005; 28: 258–267.

    Article  CAS  Google Scholar 

  30. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26: 5233–5239.

    Article  CAS  Google Scholar 

  31. Turk MJ, Guevara-Patiño JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN et al. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 2004; 200: 771–782.

    Article  CAS  Google Scholar 

  32. Salem ML, Díaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O, Montero AJ et al. Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol 2009; 182: 2030–2040.

    Article  CAS  Google Scholar 

  33. Alici E, Konstantinidis KV, Aints A, Dilber MS, Abedi-Valugerdi M et al. Visualization of 5T33 myeloma cells in the C57BL/KaLwRij mouse: establishment of a new syngeneic murine model of multiple myeloma. Exp Hematol 2004; 32: 1064–1072.

    Article  CAS  Google Scholar 

  34. Barber A, Zhang T, Sentman CL . Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. J Immunol 2008; 180: 72–78.

    Article  CAS  Google Scholar 

  35. Barber A, Sentman CL . Chimeric NKG2D T cells require both T cell- and host-derived cytokine secretion and perforin expression to increase tumor antigen presentation and systemic immunity. J Immunol 2009; 183: 2365–2372.

    Article  CAS  Google Scholar 

  36. Barber A, Rynda A, Sentman CL . Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J Immunol 2009; 183: 6939–6947.

    Article  CAS  Google Scholar 

  37. Vanderkerken K, Asosingh K, Croucher P, Van Camp B . Multiple myeloma biology: lessons from the 5TMM models. Immunol Rev 2003; 194: 196–206.

    Article  CAS  Google Scholar 

  38. Yaccoby S, Barlogie B, Epstein J . Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 1998; 92: 2908–2913.

    CAS  PubMed  Google Scholar 

  39. Laronne-Bar-On A, Zipori D, Haran-Ghera N . Increased regulatory versus effector T cell development is associated with thymus atrophy in mouse models of multiple myeloma. J Immunol 2008; 181: 3714–3724.

    Article  CAS  Google Scholar 

  40. Yang L, Edwards CM, Mundy GR . Gr-1+CD11b+ myeloid-derived suppressor cells: formidable partners in tumor metastasis. J Bone Miner Res 2010; 25: 1701–1706.

    Article  CAS  Google Scholar 

  41. Manning LS, Chamberlain NL, Leahy MF, Cordingley FT . Assessment of the therapeutic potential of cytokines, cytotoxic drugs and effector cell populations for the treatment of multiple myeloma using the 5T33 murine myeloma model. Immunol Cell Biol 1995; 73: 326–332.

    Article  CAS  Google Scholar 

  42. Frohn C, Höppner M, Schlenke P, Kirchner H, Koritke P, Luhm J et al. Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 2002; 119: 660–664.

    Article  CAS  Google Scholar 

  43. Wen YJ, Min R, Tricot G, Barlogie B, Yi Q et al. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood 2002; 99: 3280–3285.

    Article  CAS  Google Scholar 

  44. Pratt G, Goodyear O, Moss P . Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 2007; 138: 563–579.

    Article  CAS  Google Scholar 

  45. Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM et al. Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 1999; 66: 981–988.

    Article  CAS  Google Scholar 

  46. Cook G, Campbell JD . Immune regulation in multiple myeloma: the host-tumour conflict. Blood Rev 1999; 13: 151–162.

    Article  CAS  Google Scholar 

  47. Joshua DE, Brown RD, Ho PJ, Gibson J . Regulatory T cells and multiple myeloma. Clin Lymphoma Myeloma 2008; 8: 283–286.

    Article  CAS  Google Scholar 

  48. Gattinoni L, Powell Jr DJ, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    Article  CAS  Google Scholar 

  49. Williams KM, Gress RE . Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2008; 21: 579–596.

    Article  CAS  Google Scholar 

  50. Tey SK, Bollard CM, Heslop HE . Adoptive T-cell transfer in cancer immunotherapy. Immunol Cell Biol 2006; 84: 281–289.

    Article  CAS  Google Scholar 

  51. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res 2007; 13: 644–653.

    Article  CAS  Google Scholar 

  52. Gasser S, Orsulic S, Brown EJ, Raulet DH . The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005; 436: 1186–1190.

    Article  CAS  Google Scholar 

  53. Nice TJ, Coscoy L, Raulet DH . Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. J Exp Med 2009; 206: 287–298.

    Article  CAS  Google Scholar 

  54. Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J et al. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 2008; 105: 1285–1290.

    Article  CAS  Google Scholar 

  55. Zhang T, Lemoi BA, Sentman CL . Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood 2005; 106: 1544–1551.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Karin Vanderkerken for the 5T33MM tumor cells, Gary Ward and Alice Givan at the Englert Cell Analysis Laboratory for assistance with flow cytometry (Norris Cotton Cancer Center, Lebanon, NH, USA), and the Animal Resource Center at Dartmouth Medical School for help with the animal studies. We also thank Randy Noelle for helpful comments on the study design and paper. This work was supported in part by grants from the Norris Cotton Cancer Center at Dartmouth Medical School, Department of Microbiology and Immunology, and National Institutes of Health (CA130911, T32 AI07363, P20 RR16437 (KRM)). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C L Sentman.

Ethics declarations

Competing interests

The technology described in this paper is licensed by Celdara Medical, LLC. Dr Sentman and Celdara are developing the technology for clinical use. If they are successful, Dr Sentman will receive compensation. This arrangement is under compliance with the policies of Dartmouth College.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barber, A., Meehan, K. & Sentman, C. Treatment of multiple myeloma with adoptively transferred chimeric NKG2D receptor-expressing T cells. Gene Ther 18, 509–516 (2011). https://doi.org/10.1038/gt.2010.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.174

Keywords

This article is cited by

Search

Quick links