Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adeno-associated virus-mediated delivery of kringle 5 of human plasminogen inhibits orthotopic growth of ovarian cancer

A Corrigendum to this article was published on 08 July 2010

Abstract

Kringle 5 (K5) of human plasminogen is a potent angiogenesis inhibitor. In this study, we investigated the effects of recombinant adeno-associated virus (AAV)-mediated delivery of K5 in mouse models of human ovarian cancer. A single intramuscular injection of AAV-K5 resulted in sustained expression of K5 reaching a maximum serum level of 800 ng ml−1. Gene therapy inhibited both vascular endothelial growth factor (VEGF)-induced and tumor cell-induced angiogenesis in matrigel plug assays. Furthermore, a single injection of AAV-K5 significantly inhibited both subcutaneous and intraperitoneal growth of human ovarian cancer cells. Immunofluorescence studies of residual tumors surgically resected from the treated animals showed reduced tumor burden, which correlated with the inhibition of tumor neovascularization. In addition, AAV-K5 gene therapy differentially affected the nascent vessels more than mature vasculature and induced apoptotic death of tumor cells. These data show that AAV-K5 can be effectively used to inhibit ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Statistics NCFH. US Mortality Public Use Data Tapes 1969-2004 ACS, Inc. Surveillance Research 2007.

  2. Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ . Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 1998; 90: 447–454.

    Article  CAS  Google Scholar 

  3. Olson TA, Mohanraj D, Carson LF, Ramakrishnan S . Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res 1994; 54: 276–280.

    CAS  Google Scholar 

  4. Folkman J . Angiogenesis. Annu Rev Med 2006; 57: 1–18.

    Article  CAS  Google Scholar 

  5. Maeshima Y, Colorado PC, Torre A, Holthaus KA, Grunkemeyer JA, Ericksen MB et al. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 2000; 275: 21340–21348.

    Article  CAS  Google Scholar 

  6. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–285.

    Article  Google Scholar 

  7. Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Sohndel S et al. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 1996; 271: 29461–29467.

    Article  CAS  Google Scholar 

  8. Brower V . Less is more. EMBO Rep 2003; 4: 831–834.

    Article  CAS  Google Scholar 

  9. Tandle A, Blazer 3rd DG, Libutti SK . Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2004; 2: 22.

    Article  Google Scholar 

  10. Basecke J, Podleschny M, Becker A, Seiffert E, Schwiers I, Schwiers R et al. Therapy-associated genetic aberrations in patients treated for non-Hodgkin lymphoma. Br J Haematol 2008; 141: 52–59.

    Article  CAS  Google Scholar 

  11. Puduvalli VK, Sawaya R . Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neurooncol 2000; 50: 189–200.

    Article  CAS  Google Scholar 

  12. Cao Y, Chen A, An SS, Ji RW, Davidson D, Llinas M . Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 1997; 272: 22924–22928.

    Article  CAS  Google Scholar 

  13. Lu H, Dhanabal M, Volk R, Waterman MJ, Ramchandran R, Knebelmann B et al. Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem Biophys Res Commun 1999; 258: 668–673.

    Article  CAS  Google Scholar 

  14. Perri SR, Nalbantoglu J, Annabi B, Koty Z, Lejeune L, Francois M et al. Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Res 2005; 65: 8359–8365.

    Article  CAS  Google Scholar 

  15. Cao R, Wu HL, Veitonmaki N, Linden P, Farnebo J, Shi GY et al. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA 1999; 96: 5728–5733.

    Article  CAS  Google Scholar 

  16. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 2005; 65: 4663–4672.

    Article  CAS  Google Scholar 

  17. Bui Nguyen TM, Subramanian IV, Kelekar A, Ramakrishnan S . Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 2007; 109: 4793–4802.

    Article  Google Scholar 

  18. Shi CQ, Li ZD, Zhang QH, Ni QX, Jin C, Zhang N et al. Effects of human plasminogen Kringle 5 gene therapy on pancreatic cancer. Zhonghua Yi Xue Za Zhi 2004; 84: 1827–1832.

    CAS  Google Scholar 

  19. Schmitz V, Raskopf E, Gonzalez-Carmona MA, Vogt A, Kornek M, Sauerbruch T et al. Plasminogen derivatives encoding kringles 1-4 and kringles 1-5 exert indirect antiangiogenic and direct antitumoral effects in experimental lung cancer. Cancer Invest 2008; 26: 464–470.

    Article  CAS  Google Scholar 

  20. Li Y, Han W, Zhang Y, Yuan L, Shi X, Yu Y et al. Intramuscular electroporation of a plasmid encoding human plasminogen kringle 5 induces growth inhibition of Lewis lung carcinoma in mice. Cancer Biother Radiopharm 2008; 23: 332–341.

    Article  CAS  Google Scholar 

  21. Gao G, Li Y, Gee S, Dudley A, Fant J, Crosson C et al. Down-regulation of vascular endothelial growth factor and up-regulation of pigment epithelium-derived factor: a possible mechanism for the anti-angiogenic activity of plasminogen kringle 5. J Biol Chem 2002; 277: 9492–9497.

    Article  CAS  Google Scholar 

  22. Celik I, Surucu O, Dietz C, Heymach JV, Force J, Hoschele I et al. Therapeutic efficacy of endostatin exhibits a biphasic dose-response curve. Cancer Res 2005; 65: 11044–11050.

    Article  CAS  Google Scholar 

  23. Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol 2001; 19: 35–39.

    Article  CAS  Google Scholar 

  24. Yokoyama Y, Ramakrishnan S . Addition of integrin binding sequence to a mutant human endostatin improves inhibition of tumor growth. Int J Cancer 2004; 111: 839–848.

    Article  CAS  Google Scholar 

  25. Park K, Kim WJ, Cho YH, Lee YI, Lee H, Jeong S et al. Cancer gene therapy using adeno-associated virus vectors. Front Biosci 2008; 13: 2653–2659.

    Article  CAS  Google Scholar 

  26. Ito T, Okada T, Mimuro J, Miyashita H, Uchibori R, Urabe M et al. Adenoassociated virus-mediated prostacyclin synthase expression prevents pulmonary arterial hypertension in rats. Hypertension 2007; 50: 531–536.

    Article  CAS  Google Scholar 

  27. Monahan PE, Samulski RJ, Tazelaar J, Xiao X, Nichols TC, Bellinger DA et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther 1998; 5: 40–49.

    Article  CAS  Google Scholar 

  28. Subramanian IV, Bui Nguyen TM, Truskinovsky AM, Tolar J, Blazar BR, Ramakrishnan S . Adeno-associated virus-mediated delivery of a mutant endostatin in combination with carboplatin treatment inhibits orthotopic growth of ovarian cancer and improves long-term survival. Cancer Res 2006; 66: 4319–4328.

    Article  CAS  Google Scholar 

  29. Subramanian IV, Ghebre R, Ramakrishnan S . Adeno-associated virus-mediated delivery of a mutant endostatin suppresses ovarian carcinoma growth in mice. Gene Ther 2005; 12: 30–38.

    Article  CAS  Google Scholar 

  30. El-Aneed A . An overview of current delivery systems in cancer gene therapy. J Control Release 2004; 94: 1–14.

    Article  CAS  Google Scholar 

  31. Wild R, Ramakrishnan S, Sedgewick J, Griffioen AW . Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc Res 2000; 59: 368–376.

    Article  CAS  Google Scholar 

  32. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 2004; 18: 338–340.

    Article  CAS  Google Scholar 

  33. Griffin RJ, Molema G, Dings RP . Angiogenesis treatment, new concepts on the horizon. Angiogenesis 2006; 9: 67–72.

    Article  Google Scholar 

  34. Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 2008; 453: 410–414.

    Article  CAS  Google Scholar 

  35. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G . PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 2005; 7: 870–879.

    Article  CAS  Google Scholar 

  36. Torimura T, Ueno T, Sata M . Liposome-mediated gene transfer of K1-5 suppresses tumor development and improves the prognosis of hepatocellular carcinoma in mice. Med Mol Morphol 2006; 39: 72–78.

    Article  CAS  Google Scholar 

  37. Saimura M, Nagai E, Mizumoto K, Maehara N, Okino H, Katano M et al. Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice. Cancer Gene Ther 2002; 9: 799–806.

    Article  CAS  Google Scholar 

  38. Fan JK, Xiao T, Gu JF, Wei N, He LF, Ding M et al. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor. Biochem Biophys Res Commun 2008; 374: 198–203.

    Article  CAS  Google Scholar 

  39. Shen Z, Yang ZF, Gao Y, Li JC, Chen HX, Liu CC et al. The kringle 1 domain of hepatocyte growth factor has antiangiogenic and antitumor cell effects on hepatocellular carcinoma. Cancer Res 2008; 68: 404–414.

    Article  CAS  Google Scholar 

  40. Zhang X, Xu J, Lawler J, Terwilliger E, Parangi S . Adeno-associated virus-mediated antiangiogenic gene therapy with thrombospondin-1 type 1 repeats and endostatin. Clin Cancer Res 2007; 13: 3968–3976.

    Article  CAS  Google Scholar 

  41. Vassalli G, Bueler H, Dudler J, von Segesser LK, Kappenberger L . Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 2003; 90: 229–238.

    Article  Google Scholar 

  42. Aguas AP, Soares JO, Nunes JF . Autophagy in mouse hepatocytes induced by lysine acetylsalicylate. Experientia 1978; 34: 1618–1619.

    Article  CAS  Google Scholar 

  43. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004; 6: 553–563.

    CAS  Google Scholar 

  44. Jain RK . Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001; 7: 987–989.

    Article  CAS  Google Scholar 

  45. Dings RP, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH et al. Scheduling of radiation with angiogenesis inhibitors anginex and avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 2007; 13: 3395–3402.

    Article  CAS  Google Scholar 

  46. Roskoski Jr R . Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun 2007; 356: 323–328.

    Article  CAS  Google Scholar 

  47. Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 2008; 456: 809–813.

    Article  CAS  Google Scholar 

  48. Zhang J, Cao R, Zhang Y, Jia T, Cao Y, Wahlberg E . Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability. FASEB J 2009; 23: 153–163.

    Article  CAS  Google Scholar 

  49. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457–1461.

    Article  CAS  Google Scholar 

  50. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  Google Scholar 

  51. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  Google Scholar 

  52. Dong J, Grunstein J, Tejada M, Peale F, Frantz G, Liang WC et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 2004; 23: 2800–2810.

    Article  CAS  Google Scholar 

  53. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 2009; 15: 21–34.

    Article  CAS  Google Scholar 

  54. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS . Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009; 15: 232–239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Oja, Jerry Sedgewick, Dr Ruud Dings, Lynn Weber, Julia Nguyen, Dr Sabita Roy, and Dr Rakesh Kumar for their help and support. This work was supported in part by a grant from the National Institutes of Health CA114340 and Sparboe Endowment for Women's Cancer Research (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ramakrishnan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Subramanian, I., Xiao, X. et al. Adeno-associated virus-mediated delivery of kringle 5 of human plasminogen inhibits orthotopic growth of ovarian cancer. Gene Ther 17, 606–615 (2010). https://doi.org/10.1038/gt.2010.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.15

Keywords

Search

Quick links