Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuroprotection using gene therapy to induce vascular endothelial growth factor-A expression

Abstract

Engineered zinc-finger protein (ZFP) transcription factors induce the expression of endogenous genes and can be remotely delivered using adenoviral vectors. One such factor, Ad-32Ep65-Flag (Ad-p65), targets and induces expression of vascular endothelial growth factor (VEGF; also called VEGF-A) splice variants in their normal biological stoichiometry. We show that Ad-p65 transfection of primary motor neurons results in VEGF variant expression and a significant increase in axon outgrowth in these cells. Given the neuroprotective effects of VEGF and its ability to increase neurite outgrowth, we examined the efficacy of Ad-p65 to enhance motor neuron regeneration in vivo using rats that have undergone recurrent laryngeal nerve (RLN)-crush injury. Injection of Ad-p65 after RLN crush accelerated the return of vocal fold mobility and the percentage of nerve-endplate contacts in the thyroarytenoid muscle. Overall, adenoviral delivery of an engineered ZFP transcription factor inducing VEGF-A splice variant expression enhances nerve regeneration. ZFP transcription factor gene therapy to increase expression of the full complement of VEGF-A splice variants is a promising avenue for the treatment of nerve injury and neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rubin AD, Sataloff RT . Vocal fold paresis and paralysis. Otolaryngol Clin North Am 2007; 40: 1109–1131, viii–ix.

    Article  Google Scholar 

  2. Heavner SB, Rubin AD, Fung K, Old M, Hogikyan ND, Feldman EL . Dysfunction of the recurrent laryngeal nerve and the potential of gene therapy. Ann Otol, Rhinol, Laryngol 2007; 116: 441–448.

    Article  Google Scholar 

  3. Rosenstein JM, Mani N, Khaibullina A, Krum JM . Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 2003; 23: 11036–11044.

    Article  CAS  Google Scholar 

  4. Sondell M, Sundler F, Kanje M . Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 2000; 12: 4243–4254.

    Article  CAS  Google Scholar 

  5. Li B, Xu W, Luo C, Gozal D, Liu R . VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Res 2003; 111: 155–164.

    Article  CAS  Google Scholar 

  6. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 2001; 15: 1218–1220.

    Article  CAS  Google Scholar 

  7. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003; 111: 1843–1851.

    Article  CAS  Google Scholar 

  8. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA . Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002; 99: 11946–11950.

    Article  CAS  Google Scholar 

  9. Zhu Y, Jin K, Mao XO, Greenberg DA . Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J 2003; 17: 186–193.

    Article  CAS  Google Scholar 

  10. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 2004; 429: 413–417.

    Article  CAS  Google Scholar 

  11. Sopher BL, Thomas Jr PS, LaFevre-Bernt MA, Holm IE, Wilke SA, Ware CB et al. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 2004; 41: 687–699.

    Article  CAS  Google Scholar 

  12. Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005; 8: 85–92.

    Article  CAS  Google Scholar 

  13. Tolosa L, Mir M, Asensio VJ, Olmos G, Llado J . Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J Neurochem 2008; 105: 1080–1090.

    Article  CAS  Google Scholar 

  14. Carmeliet P . Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 2003; 4: 710–720.

    Article  CAS  Google Scholar 

  15. Marti HH . Vascular endothelial growth factor. Adv Exp Med Biol 2002; 513: 375–394.

    Article  CAS  Google Scholar 

  16. Amano H, Hackett NR, Kaner RJ, Whitlock P, Rosengart TK, Crystal RG . Alteration of splicing signals in a genomic/cDNA hybrid VEGF gene to modify the ratio of expressed VEGF isoforms enhances safety of angiogenic gene therapy. Mol Ther 2005; 12: 716–724.

    Article  CAS  Google Scholar 

  17. Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS . Isoforms of vascular endothelial growth factor act in a coordinate fashion To recruit and expand tumor vasculature. Mol Cell Biol 2000; 20: 7282–7291.

    Article  CAS  Google Scholar 

  18. Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P et al. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Invest 2004; 113: 188–199.

    Article  CAS  Google Scholar 

  19. Mattot V, Moons L, Lupu F, Chernavvsky D, Gomez RA, Collen D et al. Loss of the VEGF(164) and VEGF(188) isoforms impairs postnatal glomerular angiogenesis and renal arteriogenesis in mice. J Am Soc Nephrol 2002; 13: 1548–1560.

    Article  CAS  Google Scholar 

  20. Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 2002; 8: 1427–1432.

    Article  CAS  Google Scholar 

  21. Whitlock PR, Hackett NR, Leopold PL, Rosengart TK, Crystal RG . Adenovirus-mediated transfer of a minigene expressing multiple isoforms of VEGF is more effective at inducing angiogenesis than comparable vectors expressing individual VEGF cDNAs. Mol Ther 2004; 9: 67–75.

    Article  CAS  Google Scholar 

  22. Dai Q, Huang J, Klitzman B, Dong C, Goldschmidt-Clermont PJ, March KL et al. Engineered zinc finger-activating vascular endothelial growth factor transcription factor plasmid DNA induces therapeutic angiogenesis in rabbits with hindlimb ischemia. Circulation 2004; 110: 2467–2475.

    Article  CAS  Google Scholar 

  23. Liu PQ, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 2001; 276: 11323–11334.

    Article  CAS  Google Scholar 

  24. Xie D, Li Y, Reed EA, Odronic SI, Kontos CD, Annex BH . An engineered vascular endothelial growth factor-activating transcription factor induces therapeutic angiogenesis in ApoE knockout mice with hindlimb ischemia. J Vasc Surg 2006; 44: 166–175.

    Article  Google Scholar 

  25. Yu J, Lei L, Liang Y, Hinh L, Hickey RP, Huang Y et al. An engineered VEGF-activating zinc finger protein transcription factor improves blood flow and limb salvage in advanced-age mice. FASEB J 2006; 20: 479–481.

    Article  CAS  Google Scholar 

  26. Price SA, Dent C, Duran-Jimenez B, Liang Y, Zhang L, Rebar EJ et al. Gene transfer of an engineered transcription factor promoting expression of VEGF-A protects against experimental diabetic neuropathy. Diabetes 2006; 55: 1847–1854.

    Article  CAS  Google Scholar 

  27. Rubin A, Mobley B, Hogikyan N, Bell K, Sullivan K, Boulis N et al. Delivery of an adenoviral vector to the crushed recurrent laryngeal nerve. Laryngoscope 2003; 113: 985–989.

    Article  CAS  Google Scholar 

  28. Rubin AD, Hogikyan ND, Sullivan K, Boulis N, Feldman EL . Remote delivery of rAAV-GFP to the rat brainstem through the recurrent laryngeal nerve. Laryngoscope 2001; 111 (11 Pt 1): 2041–2045.

    Article  CAS  Google Scholar 

  29. Russell JW, Windebank AJ, Schenone A, Feldman EL . Insulin-like growth factor-I prevents apoptosis in neurons after nerve growth factor withdrawal. J Neurobiol 1998; 36: 455–467.

    Article  CAS  Google Scholar 

  30. Araki K, Shiotani A, Watabe K, Saito K, Moro K, Ogawa K . Adenoviral GDNF gene transfer enhances neurofunctional recovery after recurrent laryngeal nerve injury. Gene Therapy 2006; 13: 296–303.

    Article  CAS  Google Scholar 

  31. Boulis NM, Turner DE, Dice JA, Bhatia V, Feldman EL . Characterization of adenoviral gene expression in spinal cord after remote vector delivery. Neurosurgery 1999; 45: 131 discussion 7–8.

    CAS  PubMed  Google Scholar 

  32. Hermann DM, Kilic E, Kugler S, Isenmann S, Bahr M . Adenovirus-mediated GDNF and CNTF pretreatment protects against striatal injury following transient middle cerebral artery occlusion in mice. Neurobiol Dis 2001; 8: 655–666.

    Article  CAS  Google Scholar 

  33. Shiotani A, O’Malley Jr BW, Coleman ME, Alila HW, Flint PW . Reinnervation of motor endplates and increased muscle fiber size after human insulin-like growth factor I gene transfer into the paralyzed larynx. Hum Gene Ther 1998; 9: 2039–2047.

    Article  CAS  Google Scholar 

  34. Wu WC, Kao YH, Chung CH . Effects of growth-factor combinations on vascular endothelial cell growth in vitro. J Ocul Pharmacol Ther 2004; 20: 554–562.

    Article  CAS  Google Scholar 

  35. Vincent AM, Mobley BC, Hiller A, Feldman EL . IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol Dis 2004; 16: 407–416.

    Article  CAS  Google Scholar 

  36. Vincent AM, Feldman EL, Song DK, Jung V, Schild A, Zhang W et al. Adeno-associated viral-mediated insulin-like growth factor delivery protects motor neurons in vitro. Neuromolecular Med 2004; 6: 79–86.

    Article  CAS  Google Scholar 

  37. Kim B, Leventhal PS, Saltiel AR, Feldman EL . Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires MAP kinase activation. J Biol Chem 1997; 272: 21268–21273.

    Article  CAS  Google Scholar 

  38. Boulis NM, Noordmans AJ, Feldman EL, Imperiale MJ . Adeno-associated viral gene expression in the adult rat spinal cord following remote vector delivery. Mol Ther 2000; 1 S110–S1.

  39. Fung K, Hogikyan ND, Heavner SB, Ekbom D, Feldman EL . Development and characterisation of an experimental recurrent laryngeal nerve injury model for the study of viral gene therapy. J Laryngol Otol 2008; 122: 500–505.

    Article  CAS  Google Scholar 

  40. Hsieh PS, Bochinski DJ, Lin GT, Nunes L, Lin CS, Lue TF . The effect of vascular endothelial growth factor and brain-derived neurotrophic factor on cavernosal nerve regeneration in a nerve-crush rat model. BJU Int 2003; 92: 470–475.

    Article  CAS  Google Scholar 

  41. Murakami T, Arai M, Sunada Y, Nakamura A . VEGF 164 gene transfer by electroporation improves diabetic sensory neuropathy in mice. J Gene Med 2006; 8: 773–781.

    Article  CAS  Google Scholar 

  42. Park BW, Kim JR, Lee JH, Byun JH . Expression of nerve growth factor and vascular endothelial growth factor in the inferior alveolar nerve after distraction osteogenesis. Int J Oral Maxillofac Surg 2006; 35: 624–630.

    Article  Google Scholar 

  43. Scarlato M, Ara J, Bannerman P, Scherer S, Pleasure D . Induction of neuropilins-1 and -2 and their ligands, Sema3A, Sema3F, and VEGF, during Wallerian degeneration in the peripheral nervous system. Exp Neurol 2003; 183: 489–498.

    Article  CAS  Google Scholar 

  44. Simovic D, Isner JM, Ropper AH, Pieczek A, Weinberg DH . Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001; 58: 761–768.

    Article  CAS  Google Scholar 

  45. Robinson CJ, Stringer SE . The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001; 114 (Pt 5): 853–865.

    CAS  Google Scholar 

  46. Tan S, Guschin D, Davalos A, Lee YL, Snowden AW, Jouvenot Y et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci USA 2003; 100: 11997–12002.

    Article  CAS  Google Scholar 

  47. Schratzberger P, Schratzberger G, Silver M, Curry C, Kearney M, Magner M et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000; 6: 405–413.

    Article  CAS  Google Scholar 

  48. Sondell M, Lundborg G, Kanje M . Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res 1999; 846: 219–228.

    Article  CAS  Google Scholar 

  49. Sondell M, Lundborg G, Kanje M . Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 1999; 19: 5731–5740.

    Article  CAS  Google Scholar 

  50. Mu L, Yang S . An experimental study on the laryngeal electromyography and visual observations in varying types of surgical injuries to the unilateral recurrent laryngeal nerve in the neck. Laryngoscope 1991; 101 (7 Pt 1): 699–708.

    CAS  PubMed  Google Scholar 

  51. van Lith-Bijl JT, Mahieu HF, Stolk RJ, Tonnaer JA, Groenhout C, Konings PN . Laryngeal abductor function after recurrent laryngeal nerve injury in cats. Arch Otolaryngol Head Neck Surg 1996; 122: 393–396.

    Article  CAS  Google Scholar 

  52. Peel AL, Zolotukhin S, Schrimsher GW, Muzyczka N, Reier PJ . Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Therapy 1997; 4: 16–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the A. Alfred Taubman Medical Research Institute and the Program for Neurology Research and Discovery for supporting our research. SAS is supported by NIH T32 NS007222-26. We also thank Ms Judith Boldt for excellent secretarial support during the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E L Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakowski, S., Heavener, S., Lunn, J. et al. Neuroprotection using gene therapy to induce vascular endothelial growth factor-A expression. Gene Ther 16, 1292–1299 (2009). https://doi.org/10.1038/gt.2009.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.111

Keywords

This article is cited by

Search

Quick links