Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice

Abstract

Successful gene therapy will require that the therapeutic gene be expressed at a sufficient level in the correct cell type(s). To improve the specificity of gene transfer for cystic fibrosis (CF) and other airway diseases, we have begun to develop cell-type specific promoters to target the expression of transgenes to specific airway cell types. Using a FOXJ1 promoter construct previously shown to direct transgene expression specifically to ciliated cells, we have generated transgenic mice expressing human cystic fibrosis transmembrane conductance regulator (CFTR) in the murine tracheal and nasal epithelia. RNA analysis demonstrated levels of CFTR expression is greater than or equal to the level of endogenous mouse CFTR. Immunoprecipitation and western blotting demonstrated the production of human CFTR protein, and immunochemistry confirmed that CFTR was expressed in the apical region of ciliated cells. The transgenic animals were bred to CFTR null mice (Cftrtm1Unc) to determine if expression of CFTR from the FOXJ1 promoter is capable of correcting the airway defects in Cl secretion and Na+ absorption that accompany CF. Isolated trachea from neonatal CF mice expressing the FOXJ1/CFTR transgene demonstrated a correction of forskolin-stimulated Cl secretion. However, expression of human CFTR in ciliated cells of the nasal epithelia failed to significantly change the nasal bioelectrics of the CF mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Riordan JR, Rommens JM, Kerem B-S, Alon N, Rozmahel R, Grzelczak Z et al. Identification of the cystic fibrosis gene:cloning and characterization of complementary DNA. Science 1989; 245: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  2. Rommens JM, Iannuzzi MC, Kerem B-S, Drumm ML, Melmer G, Dean M et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245: 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  3. Griesenbach U, Geddes DM, Alton EW . Update on gene therapy for cystic fibrosis. Curr Opin Mol Ther 2003; 5: 489–494.

    CAS  PubMed  Google Scholar 

  4. Montier T, Delepine P, Pichon C, Ferec C, Porteous DJ, Midoux P . Non-viral vectors in cystic fibrosis gene therapy: progress and challenges. Trends Biotechnol 2004; 22: 586–592.

    Article  CAS  PubMed  Google Scholar 

  5. Cotton CU, Stutts MJ, Knowles MR, Gatzy JT, Boucher RC . Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. J Clin Invest 1987; 79: 80–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR et al. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 2005; 16: 2154–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Puchelle E, Gaillard D, Ploton D, Hinnrasky J, Fuchey C, Boutterin MC et al. Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am J Respir Cell Mol Biol 1992; 7: 485–491.

    Article  CAS  PubMed  Google Scholar 

  8. Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR, Boucher RC et al. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 1992; 2: 240–248.

    Article  CAS  PubMed  Google Scholar 

  9. Harris A, McCarthy V . The CFTR gene and regulation of its expression. Pediatr Pulmonol 2005; 40: 1–8.

    PubMed  Google Scholar 

  10. Yoshimura K, Rosenfeld MA, Nakamura H, Scherer EM, Pavirani A, Lecocq JP et al. Expression of the human cystic fibrosis transmembrane conductance regulator gene in the mouse lung after in vivo intratracheal plasmid-mediated gene transfer. Nucleic Acids Res 1992; 20: 3233–3240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Virella-Lowell I, Zusman B, Foust K, Loiler S, Conlon T, Song S et al. Enhancing rAAV vector expression in the lung. J Gene Med 2005; 7: 842–850.

    Article  CAS  PubMed  Google Scholar 

  12. Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  13. Boucher RC . New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 2004; 23: 146–158.

    Article  CAS  PubMed  Google Scholar 

  14. Koehler DR, Hannam V, Belcastro R, Steer B, Wen Y, Post M et al. Targeting transgene expression for cystic fibrosis gene therapy. Mol Ther 2001; 4: 58–65.

    Article  CAS  PubMed  Google Scholar 

  15. Ostrowski LE, Hutchins JR, Zakel K, O'Neal WK . Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter. Mol Ther 2003; 8: 637–645.

    Article  CAS  PubMed  Google Scholar 

  16. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O et al. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  17. Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA, Tsui LC et al. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 1990; 62: 1227–1233.

    Article  CAS  PubMed  Google Scholar 

  18. Mall M, Kreda SM, Mengos A, Jensen TJ, Hirtz S, Seydewitz HH et al. The DeltaF508 mutation results in loss of CFTR function and mature protein in native human colon. Gastroenterology 2004; 126: 32–41.

    Article  CAS  PubMed  Google Scholar 

  19. Grubb BR, Paradiso AM, Boucher RC . Anomalies in ion transport in CF mouse tracheal epithelium. Am J Physiol 1994; 267: C293–C300.

    Article  CAS  PubMed  Google Scholar 

  20. MacVinish LJ, Gill DR, Hyde SC, Mofford KA, Evans MJ, Higgins CF et al. Chloride secretion in the trachea of null cystic fibrosis mice: the effects of transfection with pTrial10-CFTR2. J Physiol 1997; 499: 677–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davidson DJ, Rolfe M . Mouse models of cystic fibrosis. Trends Genet 2001; 17: S29–S37.

    Article  CAS  PubMed  Google Scholar 

  22. Grubb BR, Boucher RC . Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev 1999; 79: S193–S214.

    Article  CAS  PubMed  Google Scholar 

  23. Rochelle LG, Li DC, Ye H, Lee E, Talbot CR, Boucher RC . Distribution of ion transport mRNAs throughout murine nose and lung. Am J Physiol Lung Cell Mol Physiol 2000; 279: L14–L24.

    Article  CAS  PubMed  Google Scholar 

  24. Shen BQ, Finkbeiner WE, Wine JJ, Mrsny RJ, Widdicombe JH . Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl secretion. Am J Physiol 1994; 266: L493–L501.

    CAS  PubMed  Google Scholar 

  25. Mohler PJ, Kreda SM, Boucher RC, Sudol M, Stutts MJ, Milgram SL . Yes-associated protein 65 localizes p62(c-Yes) to the apical compartment of airway epithelia by association with EBP50. J Cell Biol 1999; 147: 879–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy DB, Seemann S, Wiese S, Kirschner R, Grzeschik KH, Thies U . The human hepatocyte nuclear factor 3/fork head gene FKHL13: genomic structure and pattern of expression. Genomics 1997; 40: 462–469.

    Article  CAS  PubMed  Google Scholar 

  27. Pickles RJ . The development of paramyxovirus vectors for efficient delivery of CFTR to ciliated airway epithelium. Pediatr Pulmonol 2004; Suppl 27: 137–138.

  28. Schmid A, Bai G, Schmid N, Zaccolo M, Ostrowski LE, Conner GE et al. Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells. J Cell Sci 2006; 119: 4176–4186.

    Article  CAS  PubMed  Google Scholar 

  29. Rawlins EL, Ostrowski LE, Randell SH, Hogan BL . Inaugural article: Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci USA 2007; 104: 410–417.

    Article  CAS  PubMed  Google Scholar 

  30. Dorin JR, Dickinson P, Alton EW, Smith SN, Geddes DM, Stevenson BJ et al. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 1992; 359: 211–215.

    Article  CAS  PubMed  Google Scholar 

  31. Ziady AG, Kelley TJ, Milliken E, Ferkol T, Davis PB . Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin–enzyme complex receptor. Mol Ther 2002; 5: 413–419.

    Article  CAS  PubMed  Google Scholar 

  32. Limberis M, Anson DS, Fuller M, Parsons DW . Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther 2002; 13: 1961–1970.

    Article  CAS  PubMed  Google Scholar 

  33. Grubb BR, Pickles RJ, Ye H, Yankaskas JR, Vick RN, Engelhardt JF et al. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 1994; 371: 802–806.

    Article  CAS  PubMed  Google Scholar 

  34. Parsons DW, Grubb BR, Johnson LG, Boucher RC . Enhanced in vivo airway gene transfer via transient modification of host barrier properties with a surface-active agent. Hum Gene Ther 1998; 9: 2661–2672.

    Article  CAS  PubMed  Google Scholar 

  35. Yorifuji T, Lemna WK, Ballard CF, Rosenbloom CL, Rozmahel R, Plavsic N et al. Molecular cloning and sequence analysis of the murine cDNA for the cystic fibrosis transmembrane conductance regulator. Genomics 1991; 10: 547–550.

    Article  CAS  PubMed  Google Scholar 

  36. Lansdell KA, Delaney SJ, Lunn DP, Thomson SA, Sheppard DN, Wainwright BJ . Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl channels expressed in mammalian cells. J Physiol 1998; 508 (Part 2): 379–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan W, Samaha FF, Ramkumar M, Kleyman TR, Rubenstein RC . Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes. J Biol Chem 2004; 279: 23183–23192.

    Article  CAS  PubMed  Google Scholar 

  38. Rozmahel R, Gyomorey K, Plyte S, Nguyen V, Wilschanski M, Durie P et al. Incomplete rescue of cystic fibrosis transmembrane conductance regulator deficient mice by the human CFTR cDNA. Hum Mol Genet 1997; 6: 1153–1162.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou L, Dey CR, Wert SE, DuVall MD, Frizzell RA, Whitsett JA . Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science 1994; 266: 1705–1708.

    Article  CAS  PubMed  Google Scholar 

  40. French PJ, van Doorninck JH, Peters RH, Verbeek E, Ameen NA, Marino CR et al. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. J Clin Invest 1996; 98: 1304–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Becq F, Mettey Y, Gray MA, Galietta LJ, Dormer RL, Merten M et al. Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J Biol Chem 1999; 274: 27415–27425.

    Article  CAS  PubMed  Google Scholar 

  42. Grubb BR, Rogers TD, Kulaga HM, Burns KA, Wonsetler RL, Reed RR et al. Olfactory epithelia exhibit progressive functional and morphological defects in CF mice. Am J Physiol Cell Physiol 2007 (in press).

  43. Parsons DW, Hopkins PJ, Bourne AJ, Boucher RC, Martin AJ . Airway gene transfer in mouse nasal-airways: importance of identification of epithelial type for assessment of gene transfer. Gene Therapy 2000; 7: 1810–1815.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang C, Akita GY, Colledge WH, Ratcliff RA, Evans MJ, Hehir KM et al. Increased contact time improves adenovirus-mediated CFTR gene transfer to nasal epithelium of CF mice. Hum Gene Ther 1997; 8: 671–680.

    Article  CAS  PubMed  Google Scholar 

  45. Arimoto Y, Nagata H, Isegawa N, Kumahara K, Isoyama K, Konno A et al. In vivo expression of adenovirus-mediated lacZ gene in murine nasal mucosa. Acta Otolaryngol 2002; 122: 627–633.

    Article  CAS  PubMed  Google Scholar 

  46. Grubb BR . Bioelectric measurement of CFTR function in mice. Methods Mol Med 2002; 70: 525–535.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr JR Riordan for the monoclonal antibodies against CFTR, K Busalacchi for technical support and Dr RC Boucher for helpful suggestions and support. We also acknowledge the excellent services and support of K Burns and the members of the Cystic Fibrosis Center Histology Core, Dr M Chua and W Salmon of the Michael Hooker Microscopy Facility, and Dr B Koller's laboratory for providing CF mice. This work was funded in part by NIH (HL70199 (LEO), DK065988 (RCB), HL34322 (RCB), and HL060280 (RCB)) and the Cystic Fibrosis Foundation (Ostrow04GO (LEO) and R026-CR02 (RCB)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L E Ostrowski.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrowski, L., Yin, W., Diggs, P. et al. Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther 14, 1492–1501 (2007). https://doi.org/10.1038/sj.gt.3302994

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302994

Keywords

This article is cited by

Search

Quick links