Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer

Abstract

Cyclic stretch is known to alter a number of cellular and subcellular processes, including those involved in nonviral gene delivery. We have previously shown that moderate equibiaxial cyclic stretch (10% change in basement membrane area, 0.5 Hz, 50% duty cycle) of human pulmonary A549 cells enhances gene transfer and expression of reporter plasmid DNA in vitro, and that this phenomena may be due to alterations in cytoplasmic trafficking. Although the path by which plasmid DNA travels through the cytoplasm toward the nucleus is not well understood, the cytoskeleton and the constituents of the cytoplasm are known to significantly hinder macromolecular diffusion. Using biochemical techniques and immunofluorescence microscopy, we show that both the microfilament and microtubule networks are significantly reorganized by equibiaxial cyclic stretch. Prevention of this reorganization through the use of cytoskeletal stabilizing compounds mitigates the stretch-induced increase in gene expression, however, depolymerization in the absence of stretch is not sufficient to increase gene expression. These results suggest that cytoskeletal reorganization plays an important role in stretch-induced gene transfer and expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fung YC . Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag: New York, 1993.

    Book  Google Scholar 

  2. Ingber DE . Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997; 59: 575–599.

    Article  CAS  Google Scholar 

  3. Ingber DE . Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol 2000; 89: 1663–1670.

    Article  CAS  Google Scholar 

  4. Wang N, Naruse K, Stamenovic D, Fredberg JJ, Mijailovich SM, Tolic-Norrelykke IM et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 2001; 98: 7765–7770.

    Article  CAS  Google Scholar 

  5. Wang N, Butler JP, Ingber DE . Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260: 1124–1127.

    Article  CAS  Google Scholar 

  6. Tschumperlin DJ, Oswari J, Margulies AS . Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 2000; 162: 357–362.

    Article  CAS  Google Scholar 

  7. Tschumperlin DJ, Margulies AS . Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol 1999; 86: 2026–2033.

    Article  CAS  Google Scholar 

  8. Taylor W, Gokay KE, Capaccio C, Davis E, Glucksberg M, Dean DA . The effects of cyclic stretch on gene transfer in alveolar epithelial cells. Mol Ther 2003; 7: 542–549.

    Article  CAS  Google Scholar 

  9. Putnam AJ, Schultz K, Mooney DJ . Control of microtubule assembly by extracellular matrix and externally applied strain. Am J Physiol Cell Physiol 2001; 280: C556–C564.

    Article  CAS  Google Scholar 

  10. Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ . Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J Cell Sci 1998; 111 (Part 22): 3379–3387.

    CAS  PubMed  Google Scholar 

  11. Hayakawa K, Sato N, Obinata T . Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp Cell Res 2001; 268: 104–114.

    Article  CAS  Google Scholar 

  12. Li C, Xu Q . Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 2000; 12: 435–445.

    Article  CAS  Google Scholar 

  13. Chaqour B, Howard PS, Richards CF, Macarak EJ . Mechanical stretch induces platelet-activating factor receptor gene expression through the NF-kappaB transcription factor. J Mol Cell Cardiol 1999; 31: 1345–1355.

    Article  CAS  Google Scholar 

  14. Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M et al. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol 1999; 277: C294–C301.

    Article  CAS  Google Scholar 

  15. Dennerll TJ, Joshi HC, Steel VL, Buxbaum RE, Heidemann SR . Tension and compression in the cytoskeleton of PC-12 neurites. II: quantitative measurements. J Cell Biol 1988; 107: 665–674.

    Article  CAS  Google Scholar 

  16. Hammerschmidt S, Kuhn H, Grasenack T, Gessner C, Wirtz H . Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells. Am J Respir Cell Mol Biol 2004; 30: 396–402.

    Article  CAS  Google Scholar 

  17. Campbell EM, Hope TJ . Role of the cytoskeleton in nuclear import. Adv Drug Deliv Rev 2003; 55: 761–771.

    Article  CAS  Google Scholar 

  18. Zhou R, Geiger RC, Dean DA . Intracellular trafficking of nucleic acids. Expert Opinion Drug Delivery 2004; 1: 127–140.

    Article  CAS  Google Scholar 

  19. Luby-Phelps K . Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 2000; 192: 189–221.

    Article  CAS  Google Scholar 

  20. Seksek O, Biwersi J, Verkman AS . Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 1997; 138: 131–142.

    Article  CAS  Google Scholar 

  21. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS . Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 2000; 275: 1625–1629.

    Article  CAS  Google Scholar 

  22. McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 2002; 159: 441–452.

    Article  CAS  Google Scholar 

  23. Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF . Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 1999; 144: 657–672.

    Article  CAS  Google Scholar 

  24. Suikkanen S, Aaltonen T, Nevalainen M, Valilehto O, Lindholm L, Vuento M et al. Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic toward the nucleus. J Virol 2003; 77: 10270–10279.

    Article  CAS  Google Scholar 

  25. Leopold PL, Kreitzer G, Miyazawa N, Rempel S, Pfister KK, Rodriguez-Boulan E et al. Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum Gene Ther 2000; 11: 151–165.

    Article  CAS  Google Scholar 

  26. Sodeik B, Ebersold MW, Helenius A . Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 1997; 136: 1007–1021.

    Article  CAS  Google Scholar 

  27. van Loo ND, Fortunati E, Ehlert E, Rabelink M, Grosveld F, Scholte BJ . Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol 2001; 75: 961–970.

    Article  CAS  Google Scholar 

  28. Coonrod A, Li FQ, Horwitz M . On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Therapy 1997; 4: 1313–1321.

    Article  CAS  Google Scholar 

  29. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ . Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270: 18997–19007.

    Article  CAS  Google Scholar 

  30. Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Therapy 1999; 6: 482–497.

    Article  CAS  Google Scholar 

  31. Pollard H, Toumaniantz G, Amos JL, Avet-Loiseau H, Guihard G, Behr JP et al. Ca2+-sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J Gene Med 2001; 3: 153–164.

    Article  CAS  Google Scholar 

  32. Dauty E, Verkman AS . Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem 2005; 280: 7823–7828.

    Article  CAS  Google Scholar 

  33. Popov S, Poo MM . Diffusional transport of macromolecules in developing nerve processes. J Neurosci 1992; 12: 77–85.

    Article  CAS  Google Scholar 

  34. Pelkmans L, Puntener D, Helenius A . Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 2002; 296: 535–539.

    Article  CAS  Google Scholar 

  35. Vacik J, Dean BS, Zimmer WE, Dean DA . Cell-specific nuclear import of plasmid DNA. Gene Therapy 1999; 6: 1006–1014.

    Article  CAS  Google Scholar 

  36. Caron JM, Jones AL, Kirschner MW . Autoregulation of tubulin synthesis in hepatocytes and fibroblasts. J Cell Biol 1985; 101: 1763–1772.

    Article  CAS  Google Scholar 

  37. Forte JG, Ly B, Rong Q, Ogihara S, Ramilo M, Agnew B et al. State of actin in gastric parietal cells. Am J Physiol 1998; 274: C97–C104.

    Article  CAS  Google Scholar 

  38. Lugtenberg B, Meijers J, Peters R, van der Hoek P, van Alphen L . Electrophoretic resolution of the ‘major outer membrane protein’ of Escherichia coli K12 into four bands. FEBS Lett 1975; 58: 254–258.

    Article  CAS  Google Scholar 

  39. Kazzaz JA, Xu J, Palaia TA, Mantell L, Fein AM, Horowitz S . Cellular oxygen toxicity. oxidant injury without apoptosis. J Biol Chem 1996; 271: 15182–15186.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Chris Capaccio, Joshua Gasiorowski, Erin Vaughan, and Jennifer Young for their helpful discussions and advice. This work was supported in part by Grants HL71643 (DAD and MRG) and HL076139 (RCG) from the NIH, and funds from the Institute for BioNanotechnology in Medicine of Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Dean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, R., Taylor, W., Glucksberg, M. et al. Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene Ther 13, 725–731 (2006). https://doi.org/10.1038/sj.gt.3302693

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302693

Keywords

This article is cited by

Search

Quick links