Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of prenatal intra-amniotic LAMB3 gene delivery in a mouse model of Herlitz disease

Abstract

Prenatal gene therapy has been considered for Herlitz junctional epidermolysis bullosa (H-JEB), a lethal genodermatosis caused by the absence of any of the three subunits of laminin-5, resulting from birth in widespread blistering and erosions of skin and mucosae. To investigate this strategy in an animal model, adenovirus type 5- and adeno-associated virus (AAV) type 2-derived vectors carrying a β-galactosidase reporter gene or LAMB3 cDNA encoding the β3 chain of laminin-5 were generated, tested for stability in amniotic fluid and evaluated in vitro on murine H-JEB keratinocytes, and in vivo by prenatal injection into the amniotic cavities of laminin-5 β3-deficient mice. The different vectors were administered individually or combined at maximum doses on day 14 post coitum. Adenoviral vectors infected preferentially the foetal epidermis, whereas AAV delivered the transgene mainly to mucous membranes of the airways and the upper digestive tract. The LAMB3 transgene was expressed in target epithelia of newborn laminin-5 β3-deficient mice, and the transgenic β3 chain was shown to assemble with its endogenous partner chains, resulting in detectable amounts of laminin-5 in the basement membranes of skin and mucosae and in a lower extent of tissue separation in the skin. However, only combined delivery of the two vector types led to a minor increase of the life span of H-JEB mice. Failure to rescue diseased animals was, at least in part, due to abandonment of any conspicuous pup by the heterozygous mother. This is the first study of a prenatal gene therapy approach to a heritable blistering disorder. Although our findings indicate that prenatal combined administration of adenoviral and adeno-associated LAMB3 vectors provides therapeutic benefit to H-JEB mice, this animal model appears unsuitable for long-term investigations of the therapeutic concept.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Eady RA . Epidermolysis bullosa: scientific advances and therapeutic challenges. J Dermatol 2001; 28: 638–640.

    Article  CAS  PubMed  Google Scholar 

  2. Roseeuw D, De Raeve L, Dangoisse C, Ramet J . Treatment of epidermolysis bullosa with human cultured epidermal allografts. Dermatology 1994; 189 (Suppl 2): 68–70.

    Article  PubMed  Google Scholar 

  3. Jiang QJ, Izakovic J, Zenker M, Fartasch M, Meneguzzi G, Rascher W et al. Treatment of two patients with Herlitz junctional epidermolysis bullosa with artificial skin bioequivalents. J Pediatr 2002; 141: 553–559.

    Article  PubMed  Google Scholar 

  4. Kopp J, Horch RE, Stachel KD, Holter W, Kandler MA, Hertzberg H et al. Hematopoietic stem cell transplantation and subsequent 80% skin exchange by grafts from the same donor in a patient with Herlitz disease. Transplantation 2005; 79: 255–256.

    Article  PubMed  Google Scholar 

  5. Schneider H, Muhle C, Douar AM, Waddington S, Jiang QJ, von der Mark K et al. Sustained delivery of therapeutic concentrations of human clotting factor IX – a comparison of adenoviral and AAV vectors administered in utero. J Gene Med 2002; 4: 46–53.

    Article  PubMed  Google Scholar 

  6. Waddington SN, Buckley SM, Nivsarkar M, Jezzard S, Schneider H, Dahse T et al. In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood 2003; 101: 1359–1366.

    Article  CAS  PubMed  Google Scholar 

  7. Waddington SN, Nivsarkar MS, Mistry AR, Buckley SM, Kemball-Cook G, Mosley KL et al. Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood 2004; 104: 2714–2721.

    Article  CAS  PubMed  Google Scholar 

  8. Schneider H, Coutelle C . In utero gene therapy: the case for. Nat Med 1999; 5: 256–257.

    Article  CAS  PubMed  Google Scholar 

  9. Zanjani ED, Anderson WF . Prospects for in utero human gene therapy. Science 1999; 285: 2084–2088.

    Article  CAS  PubMed  Google Scholar 

  10. Porada CD, Tran N, Eglitis M, Moen RC, Troutman L, Flake AW et al. In utero gene therapy: transfer and long-term expression of the bacterial neo(r) gene in sheep after direct injection of retroviral vectors into preimmune fetuses. Hum Gene Ther 1998; 9: 1571–1585.

    Article  CAS  PubMed  Google Scholar 

  11. Schneider H, Adebakin S, Themis M, Cook T, Douar AM, Pavirani A et al. Therapeutic plasma concentrations of human factor IX in mice after gene delivery into the amniotic cavity: a model for the prenatal treatment of haemophilia B. J Gene Med 1999; 1: 424–432.

    Article  CAS  PubMed  Google Scholar 

  12. Lipshutz GS, Gruber CA, Cao Y, Hardy J, Contag CH, Gaensler KM . In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 2001; 3: 284–292.

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell M, Jerebtsova M, Batshaw ML, Newman K, Ye X . Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors. Gene Therapy 2000; 7: 1986–1992.

    Article  CAS  PubMed  Google Scholar 

  14. Boyle MP, Enke RA, Adams RJ, Guggino WB, Zeitlin PL . In utero AAV-mediated gene transfer to rabbit pulmonary epithelium. Mol Ther 2001; 4: 115–121.

    Article  CAS  PubMed  Google Scholar 

  15. Seppen J, van der Rijt R, Looije N, van Til NP, Lamers WH, Oude Elferink RP . Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 2003; 8: 593–599.

    Article  CAS  PubMed  Google Scholar 

  16. Dejneka NS, Surace EM, Aleman TS, Cideciyan AV, Lyubarsky A, Savchenko A et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther 2004; 9: 182–188.

    Article  CAS  PubMed  Google Scholar 

  17. Themis M, Schneider H, Kiserud T, Cook T, Adebakin S, Jezzard S et al. Successful expression of beta-galactosidase and factor IX transgenes in fetal and neonatal sheep after ultrasound-guided percutaneous adenovirus vector administration into the umbilical vein. Gene Therapy 1999; 6: 1239–1248.

    Article  CAS  PubMed  Google Scholar 

  18. David A, Cook T, Waddington S, Peebles D, Nivsarkar M, Knapton H et al. Ultrasound-guided percutaneous delivery of adenoviral vectors encoding the beta-galactosidase and human factor IX genes to early gestation fetal sheep in utero. Hum Gene Ther 2003; 14: 353–364.

    Article  CAS  PubMed  Google Scholar 

  19. Masunaga T, Shimizu H, Ishiko A, Tomita Y, Aberdam D, Ortonne JP et al. Localization of laminin-5 in the epidermal basement membrane. J Histochem Cytochem 1996; 44: 1223–1230.

    Article  CAS  PubMed  Google Scholar 

  20. McMillan JR, McGrath JA, Tidman MJ, Eady RA . Hemidesmosomes show abnormal association with the keratin filament network in junctional forms of epidermolysis bullosa. J Invest Dermatol 1998; 110: 132–137.

    Article  CAS  PubMed  Google Scholar 

  21. Utani A, Nomizu M, Timpl R, Roller PP, Yamada Y . Laminin chain assembly. Specific sequences at the C terminus of the long arm are required for the formation of specific double- and triple-stranded coiled-coil structures. J Biol Chem 1994; 269: 19167–19175.

    CAS  PubMed  Google Scholar 

  22. Peters BP, Hartle RJ, Krzesicki RF, Kroll TG, Perini F, Balun JE et al. The biosynthesis, processing, and secretion of laminin by human choriocarcinoma cells. J Biol Chem 1985; 260: 14732–14742.

    CAS  PubMed  Google Scholar 

  23. Pulkkinen L, Uitto J . Mutation analysis and molecular genetics of epidermolysis bullosa. Matrix Biol 1999; 18: 29–42.

    Article  CAS  PubMed  Google Scholar 

  24. Muhle C, Jiang QJ, Charlesworth A, Bruckner-Tuderman L, Meneguzzi G, Schneider H . Novel and recurrent mutations in the laminin-5 genes causing lethal junctional epidermolysis bullosa: molecular basis and clinical course of Herlitz disease. Hum Genet 2005; 116: 33–42.

    Article  PubMed  Google Scholar 

  25. Walther W, Stein U . Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 2000; 60: 249–271.

    Article  CAS  PubMed  Google Scholar 

  26. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Therapy 2000; 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  27. Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 2000; 24: 257–261.

    Article  CAS  PubMed  Google Scholar 

  28. Kuroki T, Kashiwagi M, Ishino K, Huh N, Ohba M . Adenovirus-mediated gene transfer to keratinocytes – a review. J Investig Dermatol Symp Proc 1999; 4: 153–157.

    Article  CAS  PubMed  Google Scholar 

  29. Braun-Falco M, Doenecke A, Smola H, Hallek M . Efficient gene transfer into human keratinocytes with recombinant adeno-associated virus vectors. Gene Therapy 1999; 6: 432–441.

    Article  CAS  PubMed  Google Scholar 

  30. Buning H, Braun-Falco M, Hallek M . Progress in the use of adeno-associated viral vectors for gene therapy. Cells Tissues Organs 2004; 177: 139–150.

    Article  PubMed  Google Scholar 

  31. Kuster JE, Guarnieri MH, Ault JG, Flaherty L, Swiatek PJ . IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm Genome 1997; 8: 673–681.

    Article  CAS  PubMed  Google Scholar 

  32. Ryan MC, Lee K, Miyashita Y, Carter WG . Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 1999; 145: 1309–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boyle MP, Enke RA, Mogayzel Jr PJ, Guggino WB, Martin DB, Agarwal S et al. Effect of adeno-associated virus-specific immunoglobulin G in human amniotic fluid on gene transfer. Hum Gene Ther 2003; 14: 365–373.

    Article  CAS  PubMed  Google Scholar 

  34. Douar AM, Themis M, Sandig V, Friedmann T, Coutelle C . Effect of amniotic fluid on cationic lipid mediated transfection and retroviral infection. Gene Therapy 1996; 3: 789–796.

    CAS  PubMed  Google Scholar 

  35. Gagnoux-Palacios L, Hervouet C, Spirito F, Roques S, Mezzina M, Danos O et al. Assessment of optimal transduction of primary human skin keratinocytes by viral vectors. J Gene Med 2005; 7: 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  36. Braun-Falco M, Eisenried A, Buning H, Ring J . Recombinant adeno-associated virus type 2-mediated gene transfer into human keratinocytes is influenced by both the ubiquitin/proteasome pathway and epidermal growth factor receptor tyrosine kinase. Arch Dermatol Res 2005; 296: 528–535.

    Article  CAS  PubMed  Google Scholar 

  37. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Luk KD, Cheung KM, Lu WW, An XM, Ng SS et al. Combination of adeno-associated virus and adenovirus vectors expressing bone morphogenetic protein-2 produces enhanced osteogenic activity in immunocompetent rats. Biochem Biophys Res Commun 2004; 317: 675–681.

    Article  CAS  PubMed  Google Scholar 

  39. Hirschhorn R . In vivo reversion to normal of inherited mutations in humans. J Med Genet 2003; 40: 721–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng X, Klement JF, Leperi DA, Birk DE, Sasaki T, Timpl R et al. Targeted inactivation of murine laminin gamma2-chain gene recapitulates human junctional epidermolysis bullosa. J Invest Dermatol 2003; 121: 720–731.

    Article  CAS  PubMed  Google Scholar 

  41. Arin MJ, Roop DR . Inducible mouse models for inherited skin diseases: implications for skin gene therapy. Cells Tissues Organs 2004; 177: 160–168.

    Article  PubMed  Google Scholar 

  42. Gache Y, Baldeschi C, Del Rio M, Gagnoux-Palacios L, Larcher F, Lacour JP, Meneguzzi G . Construction of skin equivalents for gene therapy of recessive dystrophic epidermolysis bullosa. Hum Gene Ther 2004; 15: 921–933.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang QJ, Uitto J . Animal models of epidermolysis bullosa – targets for gene therapy. J Invest Dermatol 2005; 124: xi–xiii.

    Article  CAS  PubMed  Google Scholar 

  44. Spirito F, Capt A, Rio MD, Larcher F, Guaguere E, Danos O et al. Sustained phenotypic reversion of junctional epidermolysis bullosa dog keratinocytes: Establishment of an immunocompetent animal model for cutaneous gene therapy. Biochem Biophys Res Commun 2006; 339: 769–778.

    Article  CAS  PubMed  Google Scholar 

  45. Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F . Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther 2004; 10: 660–670.

    Article  CAS  PubMed  Google Scholar 

  46. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Samulski RJ, Sally M, Muzyczka N . Adeno-associated viral vectors. In: Friedman T (ed). The Development of Human Gene Therapy. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1999, pp 131–172.

    Google Scholar 

  48. Marinkovich MP, Lunstrum GP, Burgeson RE . The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J Biol Chem 1992; 267: 17900–17906.

    CAS  PubMed  Google Scholar 

  49. Jakob M, Muhle C, Park J, Weiss S, Waddington S, Schneider H . No evidence for germ-line transmission following prenatal and early postnatal AAV-mediated gene delivery. J Gene Med 2005; 7: 630–637.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Erika Ayllón Ortiz for excellent technical assistance, Elisabeth Koppmann for animal care, Dr Philippe Moullier (Genethon, Nantes, France) for providing the plasmid pRepCap, Dr Richard Samulski (University of North Carolina, USA) for the plasmid pXX6-80, Dr Ernst Beinder (Women's Hospital, University of Erlangen-Nuernberg) for providing human amniotic fluid samples, Dr Guerrino Meneguzzi (INSERM U385, Nice, France) for the cDNA of the human laminin-5 β3 chain and the antibody K140, Dr Susan Fischer (MD Anderson Cancer Center, TX, USA) for the JWF2 cells and Dr Anne-Marie Douar (Genethon, Evry, France) for help with the generation of AAVLAMB3. This study was supported by the ELAN programme of the University of Erlangen-Nuernberg and by a grant from the German Research Foundation (SCHN 569/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühle, C., Neuner, A., Park, J. et al. Evaluation of prenatal intra-amniotic LAMB3 gene delivery in a mouse model of Herlitz disease. Gene Ther 13, 1665–1676 (2006). https://doi.org/10.1038/sj.gt.3302832

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302832

Keywords

This article is cited by

Search

Quick links