Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy progress and prospects: transcription regulatory systems

Abstract

The clinical efficacy and safety as well as the application range of gene therapy will be broadened by developing systems capable of finely modulating the expression of therapeutic genes. Transgene regulation will be crucial for maintaining appropriate levels of a gene product within the therapeutic range, thus preventing toxicity. Moreover, the possibility to modulate, stop or resume transgene expression in response to disease evolution would facilitate the combination of gene therapy with more conventional therapeutic modalities. The development of ligand-dependent transcription regulatory systems is thus of great importance. Here, we summarize the most recent progress in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Baron U, Bujard H . Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 2000; 327: 401–421.

    Article  CAS  Google Scholar 

  2. Urlinger S et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000; 97: 7963–7968.

    Article  CAS  Google Scholar 

  3. Lamartina S et al. Stringent control of gene expression in vivo by using novel doxycycline-dependent trans-activators. Hum Gene Ther 2002; 13: 199–210.

    Article  CAS  Google Scholar 

  4. Aurisicchio L et al. Regulated and prolonged expression of mIFN(alpha) in immunocompetent mice mediated by a helper-dependent adenovirus vector. Gene Therapy 2001; 8: 1817–1825.

    Article  CAS  Google Scholar 

  5. Koponen JK et al. Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2s-M2 shows a tight control of gene expression in vitro and in vivo. Gene Therapy 2003; 10: 459–466.

    Article  CAS  Google Scholar 

  6. Salucci V et al. Tight control of gene expression by a helper-dependent adenovirus vector carrying the rtTA2(s)-M2 tetracycline transactivator and repressor system. Gene Therapy 2002; 9: 1415–1421.

    Article  CAS  Google Scholar 

  7. McGee LH et al. Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol Ther 2001; 3: 688–696.

    Article  Google Scholar 

  8. Rendahl KG et al. Tightly regulated long-term erythropoietin expression in vivo using tet-inducible recombinant adeno-associated viral vectors. Hum Gene Ther 2002; 13: 335–342.

    Article  CAS  Google Scholar 

  9. Lamartina S et al. Construction of an rtTA 2s-M2/tTSkid-based transcription regulatory switch which displays no basal activity, great inducibility and high responsiveness to Doxycycline in mice and non-human primates. Mol Ther 2003; 7: 271–280.

    Article  CAS  Google Scholar 

  10. Mizuguchi H et al. Tigth positive regulation of transgene expression by a single adenovirus vector containing the rtTA and tTS expression cassettes in separate genome regions. Hum Gene Ther 2003; 14: 1265–1277.

    Article  CAS  Google Scholar 

  11. Favre D et al. Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J Virol 2002; 76: 11605–11611.

    Article  CAS  Google Scholar 

  12. Latta-Mahieu M et al. Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum Gene Ther 2002; 13: 1611–1620.

    Article  CAS  Google Scholar 

  13. Klein NC, Cunha BA . New uses of older antibiotics. Med Clin North Am 2001; 85: 125–132.

    Article  CAS  Google Scholar 

  14. Krueger et al. Single-chain Tet transregulators. Nucleic Acid Res 2003; 31: 3050–3056.

    Article  CAS  Google Scholar 

  15. Pollock R, Clackson T . Dimerizer-regulated gene expression. Curr Opin Biotechnol 2002; 13: 459–467.

    Article  CAS  Google Scholar 

  16. Xu Z-L, Mizuguchi H, Mayumi T, Hayakawa T . Regulated gene expression from adenovirus vectors: a systematic comparison of various inducible systems. Gene 2003; 309: 145–151.

    Article  CAS  Google Scholar 

  17. Pollock R et al. Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc Natl Acad Sci USA 2000; 97: 13221–13226.

    Article  CAS  Google Scholar 

  18. Auricchio A et al. Constitutive and regulated expression of processed insulin following in vivo hepatic gene transfer. Gene Therapy 2002; 9: 963–971.

    Article  CAS  Google Scholar 

  19. Auricchio A et al. Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol Ther 2002; 6: 238–242.

    Article  CAS  Google Scholar 

  20. Kahan BD . Sirolimus: a comprehensive review. Expert Opin Pharmacother 2001; 2: 1903–1917.

    Article  CAS  Google Scholar 

  21. Chong H et al. A system for small-molecule control of conditionally replication-competent adenoviral vectors. Mol Ther 2002; 5: 195–203.

    Article  CAS  Google Scholar 

  22. Clemons P et al. Synthesis of calcineurin-resistant derivatives of FK506 and selection of compensatory receptors. Chem Biol 2002; 9: 49–61.

    Article  CAS  Google Scholar 

  23. Althoff E, Cornish VW . A bacterial small-molecule three-hybrid system. Angew Chem Int Ed Eng 2002; 41: 2327–2330.

    Article  CAS  Google Scholar 

  24. Lin H, Abida WM, Sauer RT, Cornish VW . Dexamethasone-methotrexate: an efficient chemical inducer of dimerization in vivo. Am Chem Soc 2000; 122: 4247–4248.

    Article  CAS  Google Scholar 

  25. Leonhardt SA, Edwards DP . Mechanism of action of progesterone antagonists. Exp Biol Med 2002; 227: 969–980.

    Article  CAS  Google Scholar 

  26. Nordstrom JL . Antiprogestin-controllable transgene regulation in vivo. Curr Opin Biotechnol 2002; 13: 453–458.

    Article  CAS  Google Scholar 

  27. Abruzzese RV et al. Ligand-dependent regulation of vascular endothelial growth factor and erythropoietin expression by a plasmid-based autoinducible GeneSwitch system. Mol Ther 2000; 2: 276–287.

    Article  CAS  Google Scholar 

  28. Ye X et al. Ligand-inducible transgene regulation for gene therapy. Methods Enzymol 2002; 346: 551–561.

    Article  CAS  Google Scholar 

  29. Terada Y et al. Ligand-regulatable erythropoietin production by plasmid injection and in vivo electroporation. Kidney Int 2002; 64: 1966–1976.

    Article  Google Scholar 

  30. Nordstrom JL . The antiprogestin-dependent GeneSwitch® system for regulated gene therapy. Steroids 2003; 68: 1085–1094.

    Article  CAS  Google Scholar 

  31. Draghia-Akli R et al. Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors. FASEB J 2002; 16: 426–428.

    Article  CAS  Google Scholar 

  32. Sarkar NN . Mifepristone: bioavailability, pharmacokinetics and use-effectiveness. Eur J Obstet Gynecol Reprod Biol 2002; 101: 113–120.

    Article  CAS  Google Scholar 

  33. Roscilli G et al. Long-term and tight control of gene expression in mouse skeletal muscle by a new hybrid human transcription factor. Mol Ther 2002; 6: 653–663.

    Article  CAS  Google Scholar 

  34. Eltabbakh GH, Mount SL . Tamoxifen and the female reproductive tract. Expert Opin Pharmacother 2001; 2: 1399–1413.

    Article  CAS  Google Scholar 

  35. Fabian CJ, Kimler BF . Chemoprevention for high-risk women: tamoxifen and beyond. Breast J 2001; 7: 311–320.

    Article  CAS  Google Scholar 

  36. Riddiford LM, Cherbas P, Truman JW . Ecdysone receptors and their biological actions. Vitam Horm 2000; 60: 1–73.

    Article  CAS  Google Scholar 

  37. Graham LD . Ecdysone-controlled expression of transgenes. Expert Opin Biol Ther 2002; 2: 525–535.

    Article  CAS  Google Scholar 

  38. Rastinejad F, Retinoid X . receptor and its partners in the nuclear receptor family. Curr Opin Struct Biol 2001; 11: 33–38.

    Article  CAS  Google Scholar 

  39. Devarakonda S et al. Structure of the heterodimeric ecdysone receptor DNA-binding complex. EMBO J 2003; 22: 5827–5840.

    Article  CAS  Google Scholar 

  40. Karns LR et al. Manipulation of gene expression by an ecdysone-inducible gene switch in tumor xenografts. BMC Biotechnol 2001; 1: 11.

    Article  CAS  Google Scholar 

  41. Palli SR, Kapitkaya MZ, Kumar MB, Cress DE . Improved ecdysone receptor-based inducible gene regulation system. Eur J Biochem 2003; 270: 1308–1315.

    Article  CAS  Google Scholar 

  42. Subbarayan V et al. R × Ralpha overexpression in cardiomyocytes causes dilated cardiomyopathy but fails to rescue myocardial hypoplasia in R × Ralpha-null fetuses. J Clin Invest 2000; 105: 387–394.

    Article  CAS  Google Scholar 

  43. Hoppe UC, Marban E, Johns DC . Adenovirus-mediated inducible gene expression in vivo by a hybrid ecdysone receptor. Mol Ther 2000; 1: 159–164.

    Article  CAS  Google Scholar 

  44. Hoppe UC, Marban E, Johns DC . Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer. J Clin Invest 2000; 105: 1077–1084.

    Article  CAS  Google Scholar 

  45. Hoppe UC, Marban E, Johns DC . Distinct gene-specific mechanisms of arrhythmia revealed by cardiac gene transfer of two long QT disease genes, HERG and KCNE1. Proc Natl Acad Sci USA 2001; 98: 5335–5340.

    Article  CAS  Google Scholar 

  46. Dinan L, Savchenko T, Whiting P . On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 2001; 58: 1121–1132.

    Article  CAS  Google Scholar 

  47. Saez E et al. Identification of ligands and coligands for the ecdysone-regulated gene switch. Proc Natl Acad Sci USA 2000; 97: 14512–14517.

    Article  CAS  Google Scholar 

  48. Kumar MB et al. A single point mutation in ecdysone receptor leads to increased ligand specificity: implications for gene switch applications. Proc Natl Acad Sci USA 2002; 99: 14710–14715.

    Article  CAS  Google Scholar 

  49. Billas IML et al. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 2003; 426: 91–96.

    Article  CAS  Google Scholar 

  50. Miller M, Bassler BL . Quorom sensing in bacteria. Annu Rev Microbiol 2001; 55: 165–199.

    Article  CAS  Google Scholar 

  51. Vannini A et al. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 2002; 21: 4393–4401.

    Article  CAS  Google Scholar 

  52. Neddermann P et al. A novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR. EMBO Rep 2003; 4: 159–165.

    Article  CAS  Google Scholar 

  53. Zhu J, Winans SC . The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci USA 2001; 98: 1507–1512.

    Article  CAS  Google Scholar 

  54. Yates E et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain lenght-dependent manner during growth of Yersinia Pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70: 5635–5646.

    Article  CAS  Google Scholar 

  55. Weber W et al. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res 2003; 31: e71.

    Article  Google Scholar 

  56. Roberts M . Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim and sulfonamide drug classes. Mol Biotechnol 2002; 20: 261–284.

    Article  CAS  Google Scholar 

  57. Fussenegger M et al. Streptogramin-based gene regulation systems for mammalian cells. Nat Biotechnol 2000; 18: 1203–1208.

    Article  CAS  Google Scholar 

  58. Weber W et al. Macrolide-based transgene control in mammalian cells and mice. Nat Biotechnol 2002; 20: 901–907.

    Article  CAS  Google Scholar 

  59. Weber W et al. Novel promoter/transactivator configurations for macrolide- and streptogramin-responsive transgene expression in mammalian cells. J Gene Med 2002; 4: 676–686.

    Article  CAS  Google Scholar 

  60. Fux C et al. Novel macrolide-adjustable bidirectional expression modules for coordinated expression of two different transgenes in mice. J Gene Med 2003; 5: 1067–1079.

    Article  CAS  Google Scholar 

  61. Beerli RR, Barbas CF . Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 2002; 20: 135–141.

    Article  CAS  Google Scholar 

  62. Beerli RR, Schopfer U, Dreier B, CF Barbas CF . Chemically regulated zinc finger transcription factors. J Biol Chem 2000; 275: 32617–32627.

    Article  CAS  Google Scholar 

  63. Xu L et al. A versatile framework for the design of ligand-dependent, transgene-specific transcription factors. Mol Ther 2001; 3: 262–273.

    Article  CAS  Google Scholar 

  64. Pollock R, Giel M, Linher K, Clackson T . Regulation of endogenous gene expression with a small-molecule dimerizer. Nat Biotechnol 2002; 20: 729–733.

    Article  CAS  Google Scholar 

  65. Zerby D et al. In vivo ligand-inducible regulation of gene expression in a gutless adenoviral vector system. Hum Gene Ther 2003; 14: 749–761.

    Article  CAS  Google Scholar 

  66. Crittenden M et al. Pharmacologically regulated production of targeted retrovirus from T cells for systemic antitumor gene therapy. Cancer Res 2003; 63: 3173–3189.

    CAS  PubMed  Google Scholar 

  67. Ohkawa J, Taira K . Control of the functional activity of an antisense RNA by a tertacycline-responsive derivative of the human U6 snRNA promoter. Hum Gene Ther 2000; 11: 577–585.

    Article  CAS  Google Scholar 

  68. Matsukura S, Jones PA, Takai D . Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res 2003; 31: e77.

    Article  Google Scholar 

  69. Van de Wetering M et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 2003; 4: 609–615.

    Article  CAS  Google Scholar 

  70. Wiznerowicz W, Trono D . Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77: 8957–8961.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toniatti, C., Bujard, H., Cortese, R. et al. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther 11, 649–657 (2004). https://doi.org/10.1038/sj.gt.3302251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302251

Keywords

This article is cited by

Search

Quick links