Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulating gene regulation to treat genetic disorders

Abstract

Over a thousand diseases are caused by mutations that alter gene expression levels. The potential of nuclease-deficient zinc fingers, TALEs or CRISPR fusion systems to treat these diseases by modulating gene expression has recently emerged. These systems can be applied to modify the activity of gene-regulatory elements — promoters, enhancers, silencers and insulators, subsequently changing their target gene expression levels to achieve therapeutic benefits — an approach termed cis-regulation therapy (CRT). Here, we review emerging CRT technologies and assess their therapeutic potential for treating a wide range of diseases caused by abnormal gene dosage. The challenges facing the translation of CRT into the clinic are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA targeting modules and effector domains used in CRT.
Fig. 2: Using CRT to upregulate gene transcription.
Fig. 3: Using CRT to downregulate gene transcription.
Fig. 4: Using CRT to modulate DNA methylation or DNA looping.

Similar content being viewed by others

References

  1. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019). This study is the first to highlight the utility of CRISPRa upregulation as a therapeutic approach to rescue a haploinsufficient disease using both transgenic and AAV targeting of either a promoter or enhancer in postnatal mouse models of obesity.

    Article  CAS  PubMed  Google Scholar 

  3. Rehm, H. L. et al. ClinGen—the Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elkon, R. & Agami, R. Characterization of noncoding regulatory DNA in the human genome. Nat. Biotechnol. 35, 732–746 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee, S. & Ahituv, N. Gene regulatory elements, major drivers of human disease. Annu. Rev. Genomics Hum. Genet. 18, 45–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Giardine, B. et al. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nat. Genet. 43, 295–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. VanderMeer, J. E. & Ahituv, N. cis-Regulatory mutations are a genetic cause of human limb malformations. Dev. Dyn. 240, 920–930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sankaran, V. G. et al. A functional element necessary for fetal hemoglobin silencing. N. Engl. J. Med. 365, 807–814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matharu, N. K. & Ahanger, S. H. Chromatin insulators and topological domains: adding new dimensions to 3D genome architecture. Genes 6, 790–811 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matharu, N. & Ahituv, N. Minor loops in major folds: enhancer–promoter looping, chromatin restructuring, and their association with transcriptional regulation and disease. PLoS Genet. 11, e1005640 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, J., Lu, Z., Wientjes, M. G. & Au, J. L. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 12, 492–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mercuri, E. et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378, 625–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. van Deutekom, J. C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357, 2677–2686 (2007).

    Article  PubMed  Google Scholar 

  17. Li, H. et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal. Transduct. Target. Ther. 5, 1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Dever, D. P. et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539, 384–389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khosravi, M. A. et al. Targeted deletion of BCL11A gene by CRISPR–Cas9 system for fetal hemoglobin reactivation: a promising approach for gene therapy of β-thalassemia disease. Eur. J. Pharmacol. 854, 398–405 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Weber, L. et al. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci. Adv. 6, eaay9392 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Klaauw, A. A. & Farooqi, I. S. The hunger genes: pathways to obesity. Cell 161, 119–132 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. Michaud, J. L. et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum. Mol. Genet. 10, 1465–1473 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Yarrington, R. M., Verma, S., Schwartz, S., Trautman, J. K. & Carroll, D. Nucleosomes inhibit target cleavage by CRISPR–Cas9 in vivo. Proc. Natl Acad. Sci. USA 115, 9351–9358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5, e12677 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Colasante, G. et al. dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol. Ther. 28, 235–253 (2020). This report shows how CRISPRa upregulation of sodium voltage-gated channel 1 can improve the disease phenotypes in a mouse model for Dravet syndrome.

    Article  CAS  PubMed  Google Scholar 

  32. Ogiwara, I. et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903–5914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X. T. et al. tCRISPRi: tunable and reversible, one-step control of gene expression. Sci. Rep. 6, 39076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Savell, K. E. et al. A neuron-optimized CRISPR/dCas9 activation system for robust and specific gene regulation. eNeuro https://doi.org/10.1523/ENEURO.0495-18.2019 (2019).

  35. Jost, M. et al. Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs. Nat. Biotechnol. 38, 355–364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kemaladewi, D. U. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Liao, H. K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495–1507.e1415 (2017). Together with Kemaladewi et al. (2019), this paper shows that upregulation of an alternative gene can ameliorate the disease-associated phenotype in mouse models of two different muscular dystrophies, MDC1A and DMD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gawlik, K., Miyagoe-Suzuki, Y., Ekblom, P., Takeda, S. & Durbeej, M. Laminin α1 chain reduces muscular dystrophy in laminin α2 chain deficient mice. Hum. Mol. Genet. 13, 1775–1784 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Sunada, Y., Bernier, S. M., Utani, A., Yamada, Y. & Campbell, K. P. Identification of a novel mutant transcript of laminin α2 chain gene responsible for muscular dystrophy and dysmyelination in dy 2J mice. Hum. Mol. Genet. 4, 1055–1061 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00428935 (2007).

  41. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02376816 (2015).

  42. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03362502 (2017).

  43. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03375164 (2017).

  44. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01519349 (2012).

  45. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03333590 (2017).

  46. Haidet, A. M. et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc. Natl Acad. Sci. USA 105, 4318–4322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Torres, L. F. & Duchen, L. W. The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates. Brain 110, 269–299 (1987).

    Article  PubMed  Google Scholar 

  48. Rafael, J. A., Tinsley, J. M., Potter, A. C., Deconinck, A. E. & Davies, K. E. Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nat. Genet. 19, 79–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Kennedy, T. L. et al. Micro-utrophin improves cardiac and skeletal muscle function of severely affected D2/mdx mice. Mol. Ther. Methods Clin. Dev. 11, 92–105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Song, Y. et al. Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat. Med. 25, 1505–1511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wojtal, D. et al. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am. J. Hum. Genet. 98, 90–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Wehling-Henricks, M. et al. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy. Hum. Mol. Genet. 25, 2465–2482 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, C. D., Zeldich, E., Li, Y., Yuste, A. & Abraham, C. R. Activation of the anti-aging and cognition-enhancing gene klotho by CRISPR–dCas9 transcriptional effector complex. J. Mol. Neurosci. 64, 175–184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, B. & Altman, R. B. Opportunities for developing therapies for rare genetic diseases: focus on gain-of-function and allostery. Orphanet J. Rare Dis. 12, 61 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington‘s disease chromosomes. The Huntington‘s Disease Collaborative Research Group. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  57. Dabrowska, M., Juzwa, W., Krzyzosiak, W. J. & Olejniczak, M. Precise excision of the CAG tract from the huntingtin gene by Cas9 nickases. Front. Neurosci. 12, 75 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kaemmerer, W. F. & Grondin, R. C. The effects of huntingtin-lowering: what do we know so far? Degener. Neurol. Neuromuscul. Dis. 9, 3–17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fink, K. D. et al. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human Huntington’s disease fibroblasts. Cell Transpl. 25, 677–686 (2016).

    Article  Google Scholar 

  60. Garriga-Canut, M. et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc. Natl Acad. Sci. USA 109, E3136–E3145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ehrnhoefer, D. E., Butland, S. L., Pouladi, M. A. & Hayden, M. R. Mouse models of Huntington disease: variations on a theme. Dis. Model. Mech. 2, 123–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Slow, E. J. et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 1555–1567 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Bosnakovski, D. et al. Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. Nat. Commun. 8, 550 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jones, T. I. et al. Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Hum. Mol. Genet. 21, 4419–4430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Himeda, C. L. et al. Identification of epigenetic regulators of DUX4-fl for targeted therapy of facioscapulohumeral muscular dystrophy. Mol. Ther. 26, 1797–1807 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Furuhashi, M., Saitoh, S., Shimamoto, K. & Miura, T. Fatty acid-binding protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 8, 23–33 (2014).

    PubMed  Google Scholar 

  67. Chung, J. Y., Ain, Q. U., Song, Y., Yong, S. B. & Kim, Y. H. Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res. 29, 1442–1452 (2019). This report utilizes CRISPRi targeted delivery in adipocytes to downregulate a biomarker of high-fat diet-induced obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Won, Y. W. et al. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat. Mater. 13, 1157–1164 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, X. S. et al. Rescue of Fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979–992.e976 (2018). This report demonstrates that modulation of DNA methylation in the Fragile X-associated trinucleotide repeat could increase FMR1 gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiurazzi, P. & Neri, G. Pharmacological reactivation of inactive genes: the Fragile X experience. Brain Res. Bull. 56, 383–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Tabolacci, E. & Chiurazzi, P. Epigenetics, Fragile X syndrome and transcriptional therapy. Am. J. Med. Genet. A 161A, 2797–2808 (2013).

    Article  PubMed  CAS  Google Scholar 

  73. Tabolacci, E., Palumbo, F., Nobile, V. & Neri, G. Transcriptional reactivation of the FMR1 gene. A possible approach to the treatment of the Fragile X syndrome. Genes 7, 49 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  74. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, e217 (2016). This report uses Tet1 or Dnmt3a fused to dCas9 to show how DNA methylation could be edited in both cells and mice.

    Article  CAS  Google Scholar 

  75. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saunderson, E. A. et al. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat. Commun. 8, 1450 (2017). Together with Amabile et al. (2016), this paper uses a ‘hit-and-run’ epigenetic editing strategy that methylates DNA to silence gene expression.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tarjan, D. R., Flavahan, W. A. & Bernstein, B. E. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun. 10, 4258 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rossi, D. et al. β2-Microglobulin is an independent predictor of progression in asymptomatic multiple myeloma. Cancer 116, 2188–2200 (2010).

    CAS  PubMed  Google Scholar 

  79. Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet. 11, 285–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lupianez, D. G., Spielmann, M. & Mundlos, S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 32, 225–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Lawrence, M., Daujat, S. & Schneider, R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 32, 42–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Baffert, F. et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol. 290, H547–H559 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Snowden, A. W., Gregory, P. D., Case, C. C. & Pabo, C. O. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr. Biol. 12, 2159–2166 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Mendenhall, E. M. et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31, 1133–1136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O’Geen, H. et al. Ezh2–dCas9 and KRAB–dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12, 26 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stamatoyannopoulos, G. Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 33, 259–271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lettre, G. et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl Acad. Sci. USA 105, 11869–11874 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Uda, M. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc. Natl Acad. Sci. USA 105, 1620–1625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014). This report is the first to highlight the potential to treat sickle cell disease or β-thalassaemia by altering chromatin looping of the β-globin locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Breda, L. et al. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood 128, 1139–1143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liang, F. S., Ho, W. Q. & Crabtree, G. R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 4, rs2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Morgan, S. L. et al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun. 8, 15993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hao, N., Shearwin, K. E. & Dodd, I. B. Programmable DNA looping using engineered bivalent dCas9 complexes. Nat. Commun. 8, 1628 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Halmai, J. et al. Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Res. 48, 2372–2387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Finer, M. & Glorioso, J. A brief account of viral vectors and their promise for gene therapy. Gene Ther. 24, 1–2 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Burton, E. A., Fink, D. J. & Glorioso, J. C. Gene delivery using herpes simplex virus vectors. DNA Cell Biol. 21, 915–936 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Collins, M. & Thrasher, A. Gene therapy: progress and predictions. Proc. Biol. Sci. 282, 20143003 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Article  PubMed  CAS  Google Scholar 

  101. Fischer, A. Gene therapy: from birth to maturity requires commitment to science and ethics. Hum. Gene Ther. 28, 958 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Kuo, C. Y. & Kohn, D. B. Gene therapy for the treatment of primary immune deficiencies. Curr. Allergy Asthma Rep. 16, 39 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Alton, E. W. et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nat. Genet. 5, 135–142 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Zhu, N., Liggitt, D., Liu, Y. & Debs, R. Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209–211 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Alton, E. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 684–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Alton, E. W. et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 353, 947–954 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Kulkarni, J. A., Cullis, P. R. & van der Meel, R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid. Ther. 28, 146–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, L. et al. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 9, e441 (2017).

    Article  CAS  Google Scholar 

  109. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gangopadhyay, S. A. et al. Precision control of CRISPR–Cas9 using small molecules and light. Biochemistry 58, 234–244 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, J., Chen, L., Zhang, J. & Wang, Y. Drug inducible CRISPR/Cas systems. Comput. Struct. Biotechnol. J. 17, 1171–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hynes, A. P. et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat. Commun. 9, 2919 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR–Cas immunity. Cell 174, 908–916.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014). This study shows the potential of CRISPRa or CRISPRi large-scale genomic screens to upregulate or downregulate gene expression, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Landry, J. R., Mager, D. L. & Wilhelm, B. T. Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet. 19, 640–648 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Consortium, E. P. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  121. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  Google Scholar 

  123. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Doni Jayavelu, N., Jajodia, A., Mishra, A. & Hawkins, R. D. Candidate silencer elements for the human and mouse genomes. Nat. Commun. 11, 1061 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pang, B. & Snyder, M. P. Systematic identification of silencers in human cells. Nat. Genet. 52, 254–263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cuddapah, S. et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 19, 24–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Phillips-Cremins, J. E. & Corces, V. G. Chromatin insulators: linking genome organization to cellular function. Mol. Cell 50, 461–474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Khoury, A. et al. Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains. Nat. Commun. 11, 54 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Duan, D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol. Ther. 26, 2337–2356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fang, R. H., Kroll, A. V., Gao, W. & Zhang, L. Cell membrane coating nanotechnology. Adv. Mater. 30, e1706759 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Zylberberg, C., Gaskill, K., Pasley, S. & Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 24, 441–452 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Guilinger, J. P. et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods 11, 429–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jantz, D. & Berg, J. M. Probing the DNA-binding affinity and specificity of designed zinc finger proteins. Biophys. J. 98, 852–860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kocak, D. D. et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat. Biotechnol. 37, 657–666 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pattanayak, V., Guilinger, J. P. & Liu, D. R. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 546, 47–78 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, H. et al. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics 31, 3676–3678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sherry, S. T., Ward, M. & Sirotkin, K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 9, 677–679 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Adan, A., Kiraz, Y. & Baran, Y. Cell proliferation and cytotoxicity assays. Curr. Pharm. Biotechnol. 17, 1213–1221 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Corrigan-Curay, J. et al. Genome editing technologies: defining a path to clinic. Mol. Ther. 23, 796–806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. de Bono, J. S., Tolcher, A. W. & Rowinsky, E. K. The future of cytotoxic therapy: selective cytotoxicity based on biology is the key. Breast Cancer Res. 5, 154–159 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Ferdosi, S. R. et al. Multifunctional CRISPR–Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10, 105–112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mehta, A. & Merkel, O. M. Immunogenicity of Cas9 protein. J. Pharm. Sci. 109, 62–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR–Cas systems. Nucleic Acids Res. 42, 2577–2590 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Hirano, H. et al. Structure and engineering of Francisella novicida Cas9. Cell 164, 950–961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kostyushev, D. et al. Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell Mol. Life Sci. 76, 1779–1794 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Agustin-Pavon, C., Mielcarek, M., Garriga-Canut, M. & Isalan, M. Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Mol. Neurodegener. 11, 64 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Nelson, C. E. et al. Long-term evaluation of AAV–CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ertl, H. C. J. Preclinical models to assess the immunogenicity of AAV vectors. Cell Immunol. 342, 103722 (2019).

    Article  PubMed  CAS  Google Scholar 

  157. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vandamme, C., Adjali, O. & Mingozzi, F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum. Gene Ther. 28, 1061–1074 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Barnes, C., Scheideler, O. & Schaffer, D. Engineering the AAV capsid to evade immune responses. Curr. Opin. Biotechnol. 60, 99–103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hareendran, S. et al. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev. Med. Virol. 23, 399–413 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Hardcastle, N., Boulis, N. M. & Federici, T. AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opin. Biol. Ther. 18, 293–307 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Cukras, C. et al. Retinal AAV8-RS1 gene therapy for X-linked retinoschisis: initial findings from a phase I/IIa trial by intravitreal delivery. Mol. Ther. 26, 2282–2294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chandler, R. J., LaFave, M. C., Varshney, G. K., Burgess, S. M. & Venditti, C. P. Genotoxicity in mice following AAV gene delivery: a safety concern for human gene therapy? Mol. Ther. 24, 198–201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chandler, R. J. et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J. Clin. Invest. 125, 870–880 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Lee, E. J., Guenther, C. M. & Suh, J. Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering. Curr. Opin. Biomed. Eng. 7, 58–63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ogden, P. J., Kelsic, E. D., Sinai, S. & Church, G. M. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366, 1139–1143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yee, J. K. Off-target effects of engineered nucleases. FEBS J. 283, 3239–3248 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Palpant, N. J. & Dudzinski, D. Zinc finger nucleases: looking toward translation. Gene Ther. 20, 121–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Wright, D. A., Li, T., Yang, B. & Spalding, M. H. TALEN-mediated genome editing: prospects and perspectives. Biochem. J. 462, 15–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Jiang, F. & Doudna, J. A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Flint, J. & Shenk, T. Viral transactivating proteins. Annu. Rev. Genet. 31, 177–212 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163–1171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, F. et al. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res. 35, 100–112 (2007).

    Article  PubMed  CAS  Google Scholar 

  181. Siddique, A. N. et al. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a–Dnmt3L single-chain fusion protein with increased DNA methylation activity. J. Mol. Biol. 425, 479–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Chen, H. et al. Induced DNA demethylation by targeting ten–eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res. 42, 1563–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2014). This report developed the dCas9-based SAM (Table 2) and demonstrates its ability to simultaneously upregulate several genes and be used for a large-scale drug response screen.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article was supported in part by grants 1R01DK090382 and 1R01DK124769 from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the Simons Foundation Autism Research Initiative grants 629287 and 564256, the University of California, San Francisco (UCSF) School of Pharmacy 2017 Mary Anne Koda-Kimble Seed Award for Innovation and the Innovative Genomics Institute RIDER award 2019. The authors regret they could not include and highlight the comprehensive list of citations of their fellow scientists due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and N.A. conceptualized, reviewed the literature and wrote the manuscript.

Corresponding authors

Correspondence to Navneet Matharu or Nadav Ahituv.

Ethics declarations

Competing interests

N.A. is an equity holder of, and a scientific advisor for Encoded Therapeutics, a gene regulation therapeutics company. N.A. and N.M. are cofounders of Enhancer Therapeutics Inc. and co-inventors on a related patent (Publication number WO/2018/148256). N.M. and N.A. are co-inventors on a patent (US Patent US2018017186) submitted by the University of California, San Francisco, that covers gene therapy for haploinsufficiency.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cis-Regulatory elements

(CREs). DNA sequences that regulate the transcription of a neighbouring gene.

Packaging

Assembly of the nucleic acids and capsid during virus generation.

DNA scars

Irreversible and unintended DNA changes caused mainly due to off-targeting by DNA targeting modules with functional nucleases.

DNA looping

Physical DNA–DNA interaction in the genome within 3D nuclear space.

Nanoparticles

Particles that are between 1 and 100 nm in diameter.

Intracerebroventricular

A route of delivery via injection into the cerebrospinal fluid in cerebral ventricles.

Trinucleotide repeat expansion

A specific 3-bp DNA sequence that has more copies than normal in the genome.

Bioavailability

The proportion of the therapeutic agent upon administration that has an active effect.

Off-targeting

The effects arising due to non-specific and unintended targeting of DNA targeting modules such as zinc fingers, transcription activator-like effector (TALE) and CRISPR in the genome.

Delivery routes

The methods of administration of a therapeutic agent based on the site of action.

Capsid

(Also known as a viral envelope). The proteinaceous shell that packages the genetic material of the virus. Its structure is important in determining viral stability, delivery and host interactions.

Pre-existing immunity

The adaptive immune response of the body due to pre-exposure to an antigen.

AAV serotypes

(Adeno-associated virus serotypes). The variations in the capsid surface proteins of an adeno-associated virus that can define its transduction efficiency in different tissue or cell types.

Blood–brain barrier

The blood–brain barrier is the membrane made from endothelial cells surrounding the blood vessels that selectively allows solutes to transfer from the blood to the central nervous system.

Intrathecal

A route of delivery via injection into the spinal canal in order to avoid the blood–brain barrier selective permeability.

Intravitreal

A route of delivery into the vitreous humour of the eye.

Episomes

Circular DNA that is not integrated in the genome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matharu, N., Ahituv, N. Modulating gene regulation to treat genetic disorders. Nat Rev Drug Discov 19, 757–775 (2020). https://doi.org/10.1038/s41573-020-0083-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0083-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research