Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Local adenoviral expression of Fas ligand upregulates pro-inflammatory immune responses in the CNS

Abstract

The central nervous system (CNS) is a site of relative immunological privilege; despite this it can be a target of the immune system under certain conditions. For example, adenoviral vectors elicit an immune response strong enough to result in antigen elimination, in immunologically primed animals. Fas ligand (FasL) contributes to the immune privilege of certain tissues by inducing apoptosis in activated T cells. We therefore investigated whether local overexpression of FasL could downregulate the immune response to adenovirus in the brain. Adenoviral vectors expressing FasL (AdFasL) and the reporter gene β-galactosidase (Adβgal) were co-injected into the striatum of naïve or immunologically primed mice. A co-injection of an adenovirus lacking a transgene (Ad0) and Adβgal acted as a control. At 2 weeks after inoculation, reporter protein expression was significantly reduced with the AdFasL:Adβgal combination compared with the Ad0:Adβgal controls. This was accompanied by a strong inflammatory cell infiltrate, local demyelination and upregulation of pro-inflammatory cytokine gene expression. These experiments demonstrate that FasL overexpression elicits a pro-inflammatory response in the CNS rather than immunosuppression. This was characterized by chronic inflammation and accelerated loss of transgene expression. Induction of such an unexpected pro-inflammatory response caused by introducing FasL may be a peculiarity of the relative immunoprivilege of the unique environment of the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Yednock TA et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992; 356: 63–66.

    Article  CAS  PubMed  Google Scholar 

  2. Matyszak MK, Perry VH . Demyelination in the central nervous system following a delayed-type hypersensitivity response to bacillus Calmette-Guerin. Neuroscience 1995; 64: 967–977.

    Article  CAS  PubMed  Google Scholar 

  3. Wood MJ et al. Immune responses to adenovirus vectors in the nervous system. Trends Neurosci 1996; 19: 497–501.

    Article  CAS  PubMed  Google Scholar 

  4. Hickey WF, Hsu BL, Kimura H . T-lymphocyte entry into the central nervous system. J Neurosci Res 1991; 28: 254–260.

    Article  CAS  PubMed  Google Scholar 

  5. Wisniewski HM, Bloom BR . Primary demyelination as a nonspecific consequence of a cell-mediated immune reaction. J Exp Med 1975; 141: 346–359.

    Article  CAS  PubMed  Google Scholar 

  6. Borrow P, Cornell JL, Ruppe MD, Mucke L . Immunization-induced inflammatory infiltration of the central nervous system in transgenic mice expressing a microbial antigen in astrocytes. J Neuroimmunol 1995; 61: 133–149.

    Article  CAS  PubMed  Google Scholar 

  7. Duan WM, Widner H, Frodl EM, Brundin P . Immune reactions following systemic immunization prior or subsequent to intrastriatal transplantation of allogeneic mesencephalic tissue in adult rats. Neuroscience 1995; 64: 629–641.

    Article  CAS  PubMed  Google Scholar 

  8. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science 1991; 252: 431–434.

    Article  CAS  PubMed  Google Scholar 

  9. Li Q et al. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum Gene Ther 1993; 4: 403–409.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Y et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther 1996; 3: 137–144.

    PubMed  Google Scholar 

  12. Davidson BL et al. A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 1993; 3: 219–223.

    Article  CAS  PubMed  Google Scholar 

  13. Byrnes AP, Rusby JE, Wood MJ, Charlton HM . Adenovirus gene transfer causes inflammation in the brain. Neuroscience 1995; 66: 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  14. O'Leary MT, Charlton HM . A model for long-term transgene expression in spinal cord regeneration studies. Gene Ther 1999; 6: 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  15. Zsengeller ZK et al. Persistence of replication-deficient adenovirus-mediated gene transfer in lungs of immune-deficient (nu/nu) mice. Hum Gene Ther 1995; 6: 457–467.

    Article  CAS  PubMed  Google Scholar 

  16. Kass-Eisler A et al. The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther 1994; 1: 395–402.

    CAS  PubMed  Google Scholar 

  17. Dai Y et al. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995; 92: 1401–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kass-Eisler A et al. Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther 1996; 3: 154–162.

    CAS  PubMed  Google Scholar 

  19. McClane SJ, Chirmule N, Burke CV, Raper SE . Characterization of the immune response after local delivery of recombinant adenovirus in murine pancreas and successful strategies for readministration. Hum Gene Ther 1997; 8: 2207–2216.

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1994; 1: 433–442.

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y, Wilson JM . Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol 1995; 155: 2564–2570.

    CAS  PubMed  Google Scholar 

  22. Byrnes AP, Wood MJ, Charlton HM . Role of T cells in inflammation caused by adenovirus vectors in the brain. Gene Ther 1996; 3: 644–651.

    CAS  PubMed  Google Scholar 

  23. Jooss K, Ertl HC, Wilson JM . Cytotoxic T-lymphocyte target proteins and their major histocompatibility complex class I restriction in response to adenovirus vectors delivered to mouse liver. J Virol 1998; 72: 2945–2954.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brunner T et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995; 373: 441–444.

    Article  CAS  PubMed  Google Scholar 

  25. Dhein J et al. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 1995; 373: 438–441.

    Article  CAS  PubMed  Google Scholar 

  26. Ju ST et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995; 373: 444–448.

    Article  CAS  PubMed  Google Scholar 

  27. Yonehara S, Ishii A, Yonehara M . A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989; 169: 1747–1756.

    Article  CAS  PubMed  Google Scholar 

  28. Nagata S, Golstein P . The Fas death factor. Science 1995; 267: 1449–1456.

    Article  CAS  PubMed  Google Scholar 

  29. Walsh K, Sata M . Is extravasation a Fas-regulated process? Mol Med Today 1999; 5: 61–67.

    Article  CAS  PubMed  Google Scholar 

  30. Bellgrau D et al. A role for CD95 ligand in preventing graft rejection. Nature 1995; 377: 630–632.

    Article  CAS  PubMed  Google Scholar 

  31. Griffith TS et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995; 270: 1189–1192.

    Article  CAS  PubMed  Google Scholar 

  32. Sanberg PR, Borlongan CV, Saporta S, Cameron DF . Testis-derived Sertoli cells survive and provide localized immunoprotection for xenografts in rat brain. Nat Biotechnol 1996; 14: 1692–1695.

    Article  CAS  PubMed  Google Scholar 

  33. Saporta S, Cameron DF, Borlongan CV, Sanberg PR . Survival of rat and porcine Sertoli cell transplants in the rat striatum without cyclosporine -A immunosuppression. Exp Neurol 1997; 146: 299–304.

    Article  CAS  PubMed  Google Scholar 

  34. Willing AE, Cameron DF, Sanberg PR . Sertoli cell transplants: their use in the treatment of neurodegenerative disease. Mol Med Today 1998; 4: 471–477.

    Article  CAS  PubMed  Google Scholar 

  35. Kajiwara K et al. Immune responses to adenoviral vectors during gene transfer in the brain. Hum Gene Ther 1997; 8: 253–265.

    Article  CAS  PubMed  Google Scholar 

  36. Mason DW et al. The fate of allogeneic and xenogeneic neuronal tissue transplanted into the third ventricle of rodents. Neuroscience 1986; 19: 685–694.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas CE et al. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000; 97: 7482–7487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong GH et al. Inducible expression of H-2 and Ia antigens on brain cells. Nature 1984; 310: 688–691.

    Article  CAS  PubMed  Google Scholar 

  39. Suzumura A, Silberberg DH, Lisak RP . The expression of MHC antigens on oligodendrocytes: induction of polymorphic H-2 expression by lymphokines. J Neuroimmunol 1986; 11: 179–190.

    Article  CAS  PubMed  Google Scholar 

  40. Vass K, Lassmann H . Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. Am J Pathol 1990; 137: 789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelson DP et al. Proinflammatory consequences of transgenic fas ligand expression in the heart. J Clin Invest 2000; 105: 1199–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang SM et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 1997; 3: 738–743.

    Article  CAS  PubMed  Google Scholar 

  43. Muruve DA et al. Adenovirus-mediated expression of Fas ligand induces hepatic apoptosis after Systemic administration and apoptosis of ex vivo-infected pancreatic islet allografts and isografts. Hum Gene Ther 1997; 8: 955–963.

    Article  CAS  PubMed  Google Scholar 

  44. O'Connell J et al. Immune privilege or inflammation? Insights into the Fas ligand enigma. Nat Med 2001; 7: 271–274.

    Article  CAS  PubMed  Google Scholar 

  45. Schaub FJ et al. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat Med 2000; 6: 790–796.

    Article  CAS  PubMed  Google Scholar 

  46. Saas P et al. TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia 2000; 32: 102–107.

    Article  CAS  PubMed  Google Scholar 

  47. D'Souza SD et al. Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 1996; 184: 2361–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dowling P et al. Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain. J Exp Med 1996; 184: 1513–1518.

    Article  CAS  PubMed  Google Scholar 

  49. Yagita H, Seino K, Kayagaki N, Okumura K . CD95 ligand in graft rejection. Nature 1996; 379: 682.

    Article  CAS  PubMed  Google Scholar 

  50. Chen JJ, Sun Y, Nabel GJ . Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 1998; 282: 1714–1717.

    Article  CAS  PubMed  Google Scholar 

  51. Seino K, Kayagaki N, Okumura K, Yagita H . Antitumor effect of locally produced CD95 ligand. Nat Med 1997; 3: 165–170.

    Article  CAS  PubMed  Google Scholar 

  52. Igney FH, Behrens CK, Krammer PH . Tumor counterattack – concept and reality. Eur J Immunol 2000; 30: 725–731.

    Article  CAS  PubMed  Google Scholar 

  53. Zhan HG et al. Specific deletion of autoreactive T cells by adenovirus-transfected, Fas ligand-producing antigen-presenting cells. Immunol Res 2002; 26: 235–246.

    Article  PubMed  Google Scholar 

  54. Springer T, Galfre G, Secher DS, Milstein C . Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol 1978; 8: 539–551.

    Article  CAS  PubMed  Google Scholar 

  55. Springer T (ed). Cell-Surface Differentiation in the Mouse. Characterisation of ‘Jumping’ and ‘Lineage’ Antigens Using Xenogeneic Rat Monoclonal Antibodies. Plenum Press: New York, 1980.

    Google Scholar 

  56. Rabinowitz SS, Gordon S . Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli. J Exp Med 1991; 174: 827–836.

    Article  CAS  PubMed  Google Scholar 

  57. Tomonari K . A rat antibody against a structure functionally related to the mouse T-cell receptor/T3 complex. Immunogenetics 1988; 28: 455–458.

    Article  CAS  PubMed  Google Scholar 

  58. Vine AM, Lang J, Wood MJ, Charlton HM . Cytokine gene expression following neural grafts. Exp Brain Res 1999; 126: 281–288.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Wellcome Trust (UK). ELR was the recipient of a Wellcome Prize Studentship. We are particularly grateful to Dr Libermann for the generous gift of the FasL adenovirus.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regardsoe, E., McMenamin, M., Charlton, H. et al. Local adenoviral expression of Fas ligand upregulates pro-inflammatory immune responses in the CNS. Gene Ther 11, 1462–1474 (2004). https://doi.org/10.1038/sj.gt.3302322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302322

Keywords

This article is cited by

Search

Quick links