Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice

Abstract

Inefficient gene transfer, inaccessibility of stem cell compartments, transient gene expression, and adverse immune and inflammatory reactions to vector and transgenic protein are major barriers to successful in vivo application of gene therapy for most genetic diseases. Prenatal gene therapy with integrating vectors may overcome these problems and prevent early irreparable organ damage. To this end, high-dose attenuated VSV-G pseudotyped equine infectious anaemia virus (EIAV) encoding β-galactosidase under the CMV promoter was injected into the fetal circulation of immuno-competent MF1 mice. We saw prolonged, extensive gene expression in the liver, heart, brain and muscle, and to a lesser extent in the kidney and lung of postnatal mice. Progressive clustered hepatocyte staining suggests clonal expansion of cells stably transduced. We thus provide proof of principle for efficient gene delivery and persistent transgene expression after prenatal application of the EIAV vector and its potential for permanent correction of genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Coutelle C, Douar AM, Colledge WH, Froster U . The challenge of fetal gene therapy. Nat Med 1995; 1: 864–866.

    Article  CAS  PubMed  Google Scholar 

  2. Douar AM et al. Foetal gene delivery in mice by intra-amniotic administration of retroviral producer cells and adenovirus. Gene Therapy 1997; 4: 883–890.

    Article  CAS  PubMed  Google Scholar 

  3. Lipshutz GS, Flebbe-Rehwaldt L, Gaensler KM . Reexpression following readministration of an adenoviral vector in adult mice after initial in utero adenoviral administration. Mol Ther 2000; 2: 374–380.

    Article  CAS  PubMed  Google Scholar 

  4. Vincent MC et al. Adenovirus-mediated gene transfer to the respiratory tract of fetal sheep in utero. Hum Gene Ther 1995; 6: 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  5. Holzinger A et al. Intraamniotic administration of an adenoviral vector for gene transfer to fetal sheep and mouse tissues. Pediatr Res 1995; 38: 844–850.

    Article  CAS  PubMed  Google Scholar 

  6. Lipshutz GS, Flebbe-Rehwaldt L, Gaensler KM . Adenovirus-mediated gene transfer to the peritoneum and hepatic parenchyma of fetal mice in utero. Surgery 1999; 126: 171–177.

    Article  CAS  PubMed  Google Scholar 

  7. Lipshutz GS et al. Short-term correction of factor VIII deficiency in a murine model of hemophilia A after delivery of adenovirus murine factor VIII in utero. Proc Natl Acad Sci USA 1999; 96: 13324–13329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lipshutz GS, Flebbe-Rehwaldt L, Gaensler KM . Adenovirus-mediated gene transfer in the midgestation fetal mouse. J Surg Res 1999; 84: 150–156.

    Article  CAS  PubMed  Google Scholar 

  9. Themis M et al. Enhanced in vitro and in vivo gene delivery using cationic agent complexed retrovirus vectors. Gene Therapy 1998; 5: 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  10. Senoo M et al. Adenovirus-mediated in utero gene transfer in mice and guinea pigs: tissue distribution of recombinant adenovirus determined by quantitative TaqMan-polymerase chain reaction assay. Mol Genet Metab 2000; 69: 269–276.

    Article  CAS  PubMed  Google Scholar 

  11. Porada CD et al. In utero gene therapy: transfer and long-term expression of the bacterial neo(r) gene in sheep after direct injection of retroviral vectors into preimmune fetuses. Hum Gene Ther 1998; 9: 1571–1585.

    Article  CAS  PubMed  Google Scholar 

  12. Hatzoglou M, Moorman A, Lamers W . Persistent expression of genes transferred in the fetal rat liver via retroviruses. Somat Cell Mol Genet 1995; 21: 265–278.

    Article  CAS  PubMed  Google Scholar 

  13. Tran ND et al. Induction of stable prenatal tolerance to beta-galactosidase by in utero gene transfer into preimmune sheep fetuses. Blood 2001; 97: 3417–3423.

    Article  CAS  PubMed  Google Scholar 

  14. Pitt BR et al. Retrovirus-mediated gene transfer in lungs of living fetal sheep. Gene Therapy 1995; 2: 344–350.

    CAS  PubMed  Google Scholar 

  15. Yang EY et al. Fetal gene therapy: efficacy, toxicity, and immunologic effects of early gestation recombinant adenovirus. J Pediatr Surg 1999; 34: 235–241.

    Article  CAS  PubMed  Google Scholar 

  16. Schneider H et al. Sustained delivery of therapeutic concentrations of human clotting factor IX – a comparison of adenoviral and AAV vectors administered in utero. J Gene Med 2002; 4: 46–53.

    Article  PubMed  Google Scholar 

  17. Walter J et al. Successful expression of human factor IX following repeat administration of adenoviral vector in mice. Proc Natl Acad Sci USA 1996; 93: 3056–3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  19. Barry SC et al. Lentivirus vectors encoding both central polypurine tract and posttranscriptional regulatory element provide enhanced transduction and transgene expression. Hum Gene Ther 2001; 12: 1103–1108.

    Article  CAS  PubMed  Google Scholar 

  20. Park F, Kay MA . Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo. Mol Ther 2001; 4: 164–173.

    Article  CAS  PubMed  Google Scholar 

  21. Tsui LV et al. Production of human clotting Factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat Biotechnol 2002; 20: 53–57.

    Article  CAS  PubMed  Google Scholar 

  22. Olsen JC . Gene transfer vectors derived from equine infectious anemia virus. Gene Therapy 1998; 5: 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  23. Andreadis S, Fuller AO, Palsson BO . Cell cycle dependence of retroviral transduction: an issue of overlapping time scales. Biotechnol Bioeng 1998; 58: 272–281.

    Article  CAS  PubMed  Google Scholar 

  24. Loser P, Jennings GS, Strauss M, Sandig V . Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol 1998; 72: 180–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rohdewohld H et al. Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 1987; 61: 336–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schachtner S, Buck C, Bergelson J, Baldwin H . Temporally regulated expression patterns following in utero adenovirus-mediated gene transfer. Gene Therapy 1999; 6: 1249–1257.

    Article  CAS  PubMed  Google Scholar 

  27. Martin-Rendon E et al. New methods to titrate EIAV-based lentiviral vectors. Mol Ther 2002; 5: 566–570.

    Article  CAS  PubMed  Google Scholar 

  28. Themis M et al. Successful expression of beta-galactosidase and factor IX transgenes in fetal and neonatal sheep after ultrasound-guided percutaneous adenovirus vector administration into the umbilical vein. Gene Ther 1999; 6: 1239–1248.

    Article  CAS  PubMed  Google Scholar 

  29. Woo YJ et al. In utero cardiac gene transfer via intraplacental delivery of recombinant adenovirus. Circulation 1997; 96: 3561–3569.

    Article  CAS  PubMed  Google Scholar 

  30. MacKenzie T et al. Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol Ther 2002; 6: 349.

    Article  CAS  PubMed  Google Scholar 

  31. Kafri T et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 1997; 17: 314–317.

    Article  CAS  PubMed  Google Scholar 

  32. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tarantal AF et al. Rhesus monkey model for fetal gene transfer: studies with retroviral-based vector systems. Mol Ther 2001; 3: 128–138.

    Article  CAS  PubMed  Google Scholar 

  34. Jordan A, Defechereux P, Verdin E . The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 2001; 20: 1726–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DePolo NJ et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2000; 2: 218–222.

    Article  CAS  PubMed  Google Scholar 

  36. Park F et al. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat Genet 2000; 24: 49–52.

    Article  CAS  PubMed  Google Scholar 

  37. Mitrophanous K et al. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Therapy 1999; 6: 1808–1818.

    Article  CAS  PubMed  Google Scholar 

  38. Stetor SR et al. Characterization of (+) strand initiation and termination sequences located at the center of the equine infectious anemia virus genome. Biochemistry 1999; 38: 3656–3667.

    Article  CAS  PubMed  Google Scholar 

  39. Donello JE, Loeb JE, Hope TJ . Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 1998; 72: 5085–5092.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikeda Y et al. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Therapy 2002; 9: 932–938.

    Article  CAS  PubMed  Google Scholar 

  41. Albrecht TR, Lund LH, Garcia-Blanco MA . Canine cyclin T1 rescues equine infectious anemia virus tat trans-activation in human cells. Virology 2000; 268: 7–11.

    Article  CAS  PubMed  Google Scholar 

  42. Hines R, Maury W . DH82 cells: a macrophage cell line for the replication and study of equine infectious anemia virus. J Virol Methods 2001; 95: 47–56.

    Article  CAS  PubMed  Google Scholar 

  43. Rohll JB et al. Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 2002; 346: 466–500.

    Article  CAS  PubMed  Google Scholar 

  44. Suzuki A et al. Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology 2000; 32: 1230–1239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was sponsored by an MRC-programme Grant. S. Wadlington is funded by the Katherine Dormand Haemophilia Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waddington, S., Mitrophanous, K., Ellard, F. et al. Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Ther 10, 1234–1240 (2003). https://doi.org/10.1038/sj.gt.3301991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301991

Keywords

This article is cited by

Search

Quick links