Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Gene therapy for inborn errors of immunity: past, present and future

Abstract

Inborn errors of immunity (IEI) are diseases caused by genetic mutations that affect the immune system’s ability to fight pathogens, cope with the microbiota or regulate autoimmunity and inflammation. More than 500 IEI have been described and many are life-threatening and require curative therapy. Allogeneic haematopoietic stem cell transplantation is an increasingly effective curative strategy, and autologous transplantation of gene-modified haematopoietic stem and progenitor cells is also a treatment option. Gene therapy was first successfully used to restore T cell development in patients with severe combined immunodeficiency, with ex vivo engineered gammaretroviral vectors enabling the sustained correction of T cell immunodeficiency more than 20 years later. The generation of safer and more potent vectors has increased the efficacy and application of this therapy to other IEI, such as Wiskott–Aldrich syndrome and chronic granulomatous disease. Nevertheless, gene therapy based on gene addition has some limitations, the greatest of which is the lack of a physiological gene expression control. This Perspective summarizes the journey of the past 25 years that has led to the successful use of gene therapy for IEI and discusses the next steps for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defects in immune cell differentiation in severe combined immunodeficiencies.
Fig. 2: Timeline of key advances in gene therapy for SCID-X1.
Fig. 3: Lymphopoiesis after gene therapy for SCID-X1.
Fig. 4: Timeline of gene therapy for ADA deficiency.
Fig. 5: Timeline of progress in genome editing.

Similar content being viewed by others

References

  1. Friedmann, T. & Roblin, R. Gene therapy for human genetic disease? Science 175, 949–955 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Varmus, H. Retroviruses. Science 240, 1427–1435 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Williams, D. A., Lemischka, I. R., Nathan, D. G. & Mulligan, R. C. Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310, 476–480 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, A. D. & Buttimore, C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6, 2895–2902 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tangye, S. G. et al. The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS Committee. J. Clin. Immunol. 41, 666–679 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fischer, A., Notarangelo, L. D., Neven, B., Cavazzana, M. & Puck, J. M. Severe combined immunodeficiencies and related disorders. Nat. Rev. Dis. Prim. 1, 15061 (2015).

    Article  PubMed  Google Scholar 

  7. Currier, R. & Puck, J. M. SCID newborn screening: what we’ve learned. J. Allergy Clin. Immunol. 147, 417–426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gatti, R. A., Meuwissen, H. J., Allen, H. D., Hong, R. & Good, R. A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2, 1366–1369 (1968).

    Article  CAS  PubMed  Google Scholar 

  9. Pai, S. Y. et al. Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N. Engl. J. Med. 371, 434–446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lankester, A. C. et al. Hematopoietic cell transplantation in severe combined immunodeficiency: the SCETIDE 2006-2014 European cohort. J. Allergy Clin. Immunol. 149, 1744–1754 e1748 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Sarantopoulos, S. Allogeneic stem-cell transplantation — a T-cell balancing ACT. N. Engl. J. Med. 378, 480–482 (2018).

    Article  PubMed  Google Scholar 

  12. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Vossen, J. M. et al. Successful treatment of an infant with severe combined immunodeficiency by transplantation of bone marrow cells from an uncle. Clin. Exp. Immunol. 13, 9–20 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. de Saint Basile, G. et al. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13. Proc. Natl Acad. Sci. USA 84, 7576–7579 (1987).

    Article  Google Scholar 

  16. Takeshita, T. et al. Cloning of the gamma chain of the human IL-2 receptor. Science 257, 379–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Leonard, W. J., Lin, J. X. & O’Shea, J. J. The gammac family of cytokines: basic biology to therapeutic ramifications. Immunity 50, 832–850 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Russell, S. M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Santo, J. P. et al. The common cytokine receptor gamma chain and the pre-T cell receptor provide independent but critically overlapping signals in early alpha/beta T cell development. J. Exp. Med. 189, 563–574 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hirschhorn, R. et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat. Genet. 13, 290–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Stephan, V. et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N. Engl. J. Med. 335, 1563–1567 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Speckmann, C. et al. Clinical and immunologic consequences of a somatic reversion in a patient with X-linked severe combined immunodeficiency. Blood 112, 4090–4097 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Hsu, A. P. et al. IL2RG reversion event in a common lymphoid progenitor leads to delayed diagnosis and milder phenotype. J. Clin. Immunol. 35, 449–453 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kuijpers, T. W. et al. A reversion of an IL2RG mutation in combined immunodeficiency providing competitive advantage to the majority of CD8+ T cells. Haematologica 98, 1030–1038 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kury, P. et al. Long-term robustness of a T-cell system emerging from somatic rescue of a genetic block in T-cell development. EBioMedicine 59, 102961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bousso, P. et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc. Natl Acad. Sci. USA 97, 274–278 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Revy, P., Kannengiesser, C. & Fischer, A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0139-x (2019).

    Article  PubMed  Google Scholar 

  32. Danos, O. & Mulligan, R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl Acad. Sci. USA 85, 6460–6464 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hanenberg, H. et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat. Med. 2, 876–882 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Soudais, C. et al. Stable and functional lymphoid reconstitution of common cytokine receptor gamma chain deficient mice by retroviral-mediated gene transfer. Blood 95, 3071–3077 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hacein-Bey-Abina, S. et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346, 1185–1193 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Hacein-Bey-Abina, S. et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 363, 355–364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaspar, H. B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364, 2181–2187 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Gaspar, H. B. et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 3, 97ra79 (2011).

    Article  PubMed  Google Scholar 

  39. Blanco, E., Izotova, N., Booth, C. & Thrasher, A. J. Immune reconstitution after gene therapy approaches in patients with X-linked severe combined immunodeficiency disease. Front. Immunol. 11, 608653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pai, S. Y. & Thrasher, A. J. Gene therapy for X-linked severe combined immunodeficiency: historical outcomes and current status. J. Allergy Clin. Immunol. 146, 258–261 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt, M. et al. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat. methods 4, 1051–1057 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Bushman, F. D. Retroviral integration and human gene therapy. J. Clin. Invest. 117, 2083–2086 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deichmann, A. et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J. Clin. Invest. 117, 2225–2232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clarke, E. L. et al. T cell dynamics and response of the microbiota after gene therapy to treat X-linked severe combined immunodeficiency. Genome Med. 10, 70 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Izotova, N. et al. Long-term lymphoid progenitors independently sustain naive T and NK cell production in humans. Nat. Commun. 12, 1622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brugman, M. H. et al. Development of a diverse human T-cell repertoire despite stringent restriction of hematopoietic clonality in the thymus. Proc. Natl Acad. Sci. USA 112, E6020–E6027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  48. Hacein-Bey-Abina, S. et al. LMO2-associated clonal t cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Six, E. LMO2 associated clonal T cell proliferation 15 years after gamma-retrovirus gene therapy for SCIDX1. Mol. Ther. 25, 347–348 (2017).

    Google Scholar 

  51. Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boztug, K. et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N. Engl. J. Med. 363, 1918–1927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stein, S. et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat. Med. 16, 198–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Tucci, F., Scaramuzza, S., Aiuti, A. & Mortellaro, A. Update on clinical ex vivo hematopoietic stem cell gene therapy for inherited monogenic diseases. Mol. Ther. 29, 489–504 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Cicalese, M. P. et al. Retroviral gene therapy for the treatment of ADA-SCID long-term follow up and first case of T-cell acute leukaemia due to insertional mutagenesis. Hemasphere 5, 10-1097/hs90000000000000566 (2020).

    Google Scholar 

  56. Thornhill, S. I. et al. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol. Ther. 16, 590–598 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Hacein-Bey-Abina, S. et al. A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N. Engl. J. Med. 371, 1407–1417 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vely, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Berteloot, L. et al. Alternative pathways for the development of lymphoid structures in humans. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2108082118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Laffort, C. et al. Severe cutaneous papillomavirus disease after haemopoietic stem-cell transplantation in patients with severe combined immune deficiency caused by common gammac cytokine receptor subunit or JAK-3 deficiency. Lancet 363, 2051–2054 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Hershfield, M. S. Adenosine deaminase deficiency: clinical expression, molecular basis, and therapy. Semin. Hematol. 35, 291–298 (1998).

    CAS  PubMed  Google Scholar 

  62. Hassan, A. et al. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood 120, 3615–3624 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Cuvelier, G. D. E. et al. Outcomes following treatment for adenosine deaminase deficient severe combined immunodeficiency: a report from the PIDTC. Blood https://doi.org/10.1182/blood.2022016196 (2022).

    Article  PubMed  Google Scholar 

  64. Booth, C. & Gaspar, H. B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics 3, 349–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270, 475–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Muul, L. M. et al. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 101, 2563–2569 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Bordignon, C. et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 270, 470–475 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Kohn, D. B. et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat. Med. 4, 775–780 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoogerbrugge, P. M. et al. Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Ther. 3, 179–183 (1996).

    CAS  PubMed  Google Scholar 

  70. Aiuti, A. et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 360, 447–458 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Gaspar, H. B. et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci. Transl. Med. 3, 97ra80 (2011).

    Article  PubMed  Google Scholar 

  72. Candotti, F. et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120, 3635–3646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aiuti, A. et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J. Clin. Invest. 117, 2233–2240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Biasco, L. et al. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol. Med. 3, 89–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kohn, D. B. et al. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N. Engl. J. Med. 384, 2002–2013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aiuti, A. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341, 1233151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Naldini, L. Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol. Med. https://doi.org/10.15252/emmm.201809958 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mamcarz, E. et al. Lentiviral gene therapy combined with low-dose Busulfan in Infants with SCID-X1. N. Engl. J. Med. 380, 1525–1534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thrasher, A. J. et al. Failure of SCID-X1 gene therapy in older patients. Blood 105, 4255–4257 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. De Ravin, S. S. et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 8, 335ra357 (2016).

    Article  Google Scholar 

  82. Notarangelo, L. D., Kim, M. S., Walter, J. E. & Lee, Y. N. Human RAG mutations: biochemistry and clinical implications. Nat. Rev. Immunol. 16, 234–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van Til, N. P. et al. Recombination-activating gene 1 (Rag1)-deficient mice with severe combined immunodeficiency treated with lentiviral gene therapy demonstrate autoimmune Omenn-like syndrome. J. Allergy Clin. Immunol. 133, 1116–1123 (2014).

    Article  PubMed  Google Scholar 

  84. van Til, N. P. et al. Correction of murine Rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene. Mol. Ther. 20, 1968–1980 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pike-Overzet, K. et al. Successful RAG1-SCID gene therapy depends on the level of RAG1 expression. J. Allergy Clin. Immunol. 134, 242–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Benjelloun, F. et al. Stable and functional lymphoid reconstitution in Artemis-deficient mice following lentiviral Artemis gene transfer into hematopoietic stem cells. Mol. Ther. 16, 1490–1499 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Cowan, M. J. et al. Early outcome of a phase I/II clinical trial (NCT03538899) of gene-corrected autologous CD34+ hematopoietic cells and low-exposure busulfan in newly diagnosed patients with Artemis-deficient severe combined immunodeficiency (ART-SCID). Biol. Blood Marrow Transplant. 26 (Suppl. 3), S88–S89 (2020).

    Article  Google Scholar 

  88. Booth, C., Romano, R., Roncarolo, M. G. & Thrasher, A. J. Gene therapy for primary immunodeficiency. Hum. Mol. Genet. 28, R15–R23 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Thrasher, A. J. & Burns, S. O. WASP: a key immunological multitasker. Nat. Rev. Immunol. 10, 182–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Wada, T. et al. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc. Natl Acad. Sci. USA 98, 8697–8702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burroughs, L. M. et al. Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood 135, 2094–2105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Albert, M. H. et al. Hematopoietic stem cell transplantation for Wiskott-Aldrich syndrome: an EBMT Inborn Errors Working Party analysis. Blood 139, 2066–2079 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Braun, C. J. et al. Gene therapy for Wiskott-Aldrich syndrome–long-term efficacy and genotoxicity. Sci. Transl. Med. 6, 227ra233 (2014).

    Article  Google Scholar 

  94. Hacein-Bey Abina, S. et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA 313, 1550–1563 (2015).

    Article  PubMed  Google Scholar 

  95. Ferrua, F. et al. Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematol. 6, e239–e253 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Labrosse, E. et al. Outcome of hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome. Blood 134 (Suppl. 1), 4629 (2019).

    Article  Google Scholar 

  97. Magnani, A. et al. Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome. Nat. Med. 28, 71–80 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sereni, L. et al. Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome. J. Allergy Clin. Immunol. 144, 825–838 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morris, E. C. et al. Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood 130, 1327–1335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Scala, S. et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 24, 1683–1690 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Six, E. et al. Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood 135, 1219–1231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Holland, S. M. Chronic granulomatous disease. Clin. Rev. Allergy Immunol. 38, 3–10 (2018).

    Article  Google Scholar 

  103. Gungor, T. & Chiesa, R. Cellular therapies in chronic granulomatous disease. Front. Pediatr. 8, 327 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kohn, D. B. et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat. Med. 26, 200–206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kohn, D. B. Phase 1/2 study of lentiviral-mediated ex-vivo gene therapy for pediatrics patients with severe leukocyte adhesion deficiency-I (LAD-I): initial results from the first treated patient. Mol. Ther. 28, 56 (2020).

    Google Scholar 

  106. Soheili, T. et al. Gene-corrected human Munc13-4-deficient CD8+ T cells can efficiently restrict EBV-driven lymphoproliferation in immunodeficient mice. Blood 128, 2859–2862 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Panchal, N. et al. Transfer of gene-corrected T cells corrects humoral and cytotoxic defects in patients with X-linked lymphoproliferative disease. J. Allergy Clin. Immunol. 142, 235–245 e236 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghosh, S. et al. T-cell gene therapy for perforin deficiency corrects cytotoxicity defects and prevents hemophagocytic lymphohistiocytosis manifestations. J. Allergy Clin. Immunol. 142, 904–913 e903 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Barzaghi, F. et al. Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study. J. Allergy Clin. Immunol. 141, 1036–1049 e1035 (2018).

    Article  PubMed  Google Scholar 

  111. Borna, S., Lee, E., Sato, Y. & Bacchetta, R. Towards gene therapy for IPEX syndrome. Eur. J. Immunol. 52, 705–716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Masiuk, K. E., Laborada, J., Roncarolo, M. G., Hollis, R. P. & Kohn, D. B. Lentiviral gene therapy in HSCs restores lineage-specific Foxp3 expression and suppresses autoimmunity in a mouse model of IPEX syndrome. Cell Stem Cell 24, 309–317 e307 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Delville, M. et al. A combination of cyclophosphamide and interleukin-2 allows CD4+ T cells converted to Tregs to control scurfy syndrome. Blood 137, 2326–2336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Ferrari, G., Thrasher, A. J. & Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 22, 216–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Kwon, H. S. et al. Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. Blood 133, 2104–2108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Castiello, M. C. et al. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J. Allergy Clin. Immunol. 147, 309–320 e306 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Omer-Javed, A. et al. Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell 185, 2248–2264 e2221 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 380, 947–959 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and beta-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Genovese, P. et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510, 235–240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schiroli, G. et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan0820 (2017).

    Article  PubMed  Google Scholar 

  124. Pavel-Dinu, M. et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat. Commun. 10, 1634 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gardner, C. L. et al. Gene editing rescues in vitro T cell development of RAG2-deficient induced pluripotent stem cells in an artificial thymic organoid system. J. Clin. Immunol. 41, 852–862 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goodwin, M. et al. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. Sci. Adv. 6, eaaz0571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hubbard, N. et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood 127, 2513–2522 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Vavassori, V. et al. Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome. EMBO Mol. Med. 13, e13545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kuo, C. Y. et al. Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome. Cell Rep. 23, 2606–2616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brault, J. et al. CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood 138, 2768–2780 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gray, D. H. et al. Optimizing integration and expression of transgenic Bruton’s tyrosine kinase for CRISPR-Cas9-mediated gene editing of x-linked agammaglobulinemia. CRISPR J. 4, 191–206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fox, T. A. et al. Therapeutic gene editing of T cells to correct CTLA-4 insufficiency. Sci. Transl. Med. 14, eabn5811 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Ferrari, S. et al. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. Nat. Biotechnol. 38, 1298–1308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. De Ravin, S. S. et al. Enhanced homology-directed repair for highly efficient gene editing in hematopoietic stem/progenitor cells. Blood 137, 2598–2608 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sweeney, C. L. et al. Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair. Gene Ther. 28, 373–390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Canny, M. D. et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat. Biotechnol. 36, 95–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Newby, G. A. & Liu, D. R. In vivo somatic cell base editing and prime editing. Mol. Ther. 29, 3107–3124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zeng, J. et al. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, B. C., Lozano, R. J. & Dunbar, C. E. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol. Ther. 29, 3205–3218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lucas, C. L., Chandra, A., Nejentsev, S., Condliffe, A. M. & Okkenhaug, K. PI3Kdelta and primary immunodeficiencies. Nat. Rev. Immunol. 16, 702–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jhamnani, R. D. & Rosenzweig, S. D. An update on gain-of-function mutations in primary immunodeficiency diseases. Curr. Opin. Allergy Clin. Immunol. 17, 391–397 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Rieux-Laucat, F. What’s up in the ALPS. Curr. Opin. Immunol. 49, 79–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Fischer, A., Dewatripont, M. & Goldman, M. Benefit corporation: a path to affordable gene therapies. Nat. Med. 25, 1813–1814 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Editorial. Gene therapies should be for all. Nat. Med. 27, 1311 (2021).

    Article  Google Scholar 

  147. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91, 6064–6068 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks M. Tiouri for excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Fischer.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks A. Aiuti, D. B. Kohn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 23, 397–408 (2023). https://doi.org/10.1038/s41577-022-00800-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00800-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing