Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy in nonhuman primate models of human autoimmune disease

Abstract

Before autoimmune diseases in humans can be treated with gene therapy, the safety and efficacy of the used vectors must be tested in valid experimental models. Monkeys, such as the rhesus macaque or the common marmoset, provide such models. This publication reviews the state of the art in monkey models for rheumatoid arthritis and multiple sclerosis and the (few) gene therapy experiments that have been performed in these models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arend WP, Dayer JM . Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 1995; 38: 151–160.

    CAS  PubMed  Google Scholar 

  2. Arnason BG . Interferon beta in multiple sclerosis. Clin Immunol Immunopathol 1996; 81: 1–11.

    CAS  PubMed  Google Scholar 

  3. Bontrop RE, Otting N, Slierendregt BL, Lanchbury JS . Evolution of major histocompatibility complex polymorphisms and T-cell receptor diversity in primates. Immunol Rev 1995; 143: 33–62.

    CAS  PubMed  Google Scholar 

  4. Bontrop RE, Otting N, de Groot NG, Doxiadis GG . Major histocompatibility complex class II polymorphisms in primates. Immunol Rev 1999; 167: 339–350.

    CAS  PubMed  Google Scholar 

  5. Toro-Goyco E, Cora EM, Kessler MJ, Martinez-Carrion M . Induction of experimental myasthenia gravis in rhesus monkeys: a model for the study of the human disease. P R Health Sci J 1986; 5: 13–18.

    CAS  PubMed  Google Scholar 

  6. Bigazzi P, Rose N . Spontaneous autoimmune thyroiditis in animals as a model of human disease. Prog Allergy 1975; 19: 245–274.

    CAS  PubMed  Google Scholar 

  7. Kraan MC et al. Asymptomatic synovitis precedes clinically manifest arthritis. Arthritis Rheum 1998; 41: 1481–1488.

    CAS  PubMed  Google Scholar 

  8. Rubin AS et al. Experimental arthropathy induced in rhesus monkeys (Macaca mulatta) by intradermal immunization with native bovine type II collagen. Lab Invest 1987; 57: 524–534.

    CAS  PubMed  Google Scholar 

  9. Bakker NP et al. Experimental immune mediated arthritis in rhesus monkeys. A model for human rheumatoid arthritis? Rheumatol Int 1990; 10: 21–29.

    CAS  Google Scholar 

  10. Terato K et al. Sex-linked differences in susceptibility of cynomolgus monkeys to type II collagen-induced arthritis. Evidence that epitope-specific immune suppression is involved in the regulation of type II collagen autoantibody formation. Arthritis Rheum 1989; 32: 748–758.

    CAS  PubMed  Google Scholar 

  11. Stuart J, Townes A, Ah K . Collagen autoimmune arthritis. Annu Rev Immunol 1984; 2: 199–218.

    CAS  PubMed  Google Scholar 

  12. Bakker NP et al. Collagen-induced arthritis in an outbred group of rhesus monkeys comprising responder and nonresponder animals. Relationship between the course of arthritis and collagen-specific immunity. Arthritis Rheum 1991; 34: 616–624.

    CAS  PubMed  Google Scholar 

  13. Anthony DD, Haqqi TM . Collagen-induced arthritis in mice: an animal model to study the pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol 1999; 17: 240–244.

    CAS  PubMed  Google Scholar 

  14. Staines NA, Wooley PH . Collagen arthritis – what can it teach us? Br J Rheumatol 1994; 33: 798–807.

    CAS  PubMed  Google Scholar 

  15. Myers LK, Rosloniec EF, Cremer MA, Kang AH . Collagen-induced arthritis, an animal model of autoimmunity. Life Sci 1997; 61: 1861–1878.

    CAS  PubMed  Google Scholar 

  16. Bakker NP et al. Resistance to collagen-induced arthritis in a nonhuman primate species maps to the major histocompatibility complex class I region. J Exp Med 1992; 175: 933–937.

    CAS  PubMed  Google Scholar 

  17. Slierendregt BL et al. Identification of an Mhc-DPB1 allele involved in susceptibility to experimental autoimmune encephalomyelitis in rhesus macaques. Int Immunol 1995; 7: 1671–1679.

    CAS  PubMed  Google Scholar 

  18. Turner S et al. Identification of antibody epitopes in the CB-11 peptide of bovine type II collagen recognized by sera from arthritis-susceptible and -resistant rhesus monkeys. Clin Exp Immunol 1994; 96: 275–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. t Hart BA, Bakker NP, Jonker M, Bontrop RE . Resistance to collagen-induced arthritis in rats and rhesus monkeys after immunization with attenuated type II collagen. Eur J Immunol 1993; 23: 1588–1594.

    CAS  Google Scholar 

  20. Noyori K et al. Binding characteristics of antitype II collagen antibody to the surface of diseased human cartilage as a probe for tissue damage. J Rheumatol 1994; 21: 293–296.

    CAS  PubMed  Google Scholar 

  21. t Hart BA et al. Collagen-induced arthritis in rhesus monkeys: evaluation of markers for inflammation and joint degradation. Br J Rheumatol 1998; 37: 314–323.

    Google Scholar 

  22. Bakker NP et al. The anti-arthritic and immunosuppressive effects of cyclosporin A on collagen-induced arthritis in the rhesus monkey. Clin Exp Immunol 1993; 93: 318–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brok HP et al. Prophylactic and therapeutic effects of a humanized monoclonal antibody against the IL-2 receptor (DACLIZUMAB) on collagen-induced arthritis (CIA) in rhesus monkeys. Clin Exp Immunol 2001; 124: 134–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van de Loo FA, van den Berg WB . Gene therapy for rheumatoid arthritis. Lessons from animal models, including studies on interleukin-4, interleukin-10, and interleukin-1 receptor antagonist as potential disease modulators. Rheum Dis Clin North Am 2002; 28: 127–149.

    PubMed  Google Scholar 

  25. Vervoordeldonk MJ, Tak PP . Cytokines in rheumatoid arthritis. Curr Rheumatol Rep 2002; 4: 208–217.

    PubMed  Google Scholar 

  26. Apparailly F, Gay S, Jorgensen C . Designing novel therapeutic strategies for rheumatic diseases. Trends Immunol 2001; 22: 537–539.

    CAS  PubMed  Google Scholar 

  27. Gouze E, Ghivizzani SC, Robbins PD, Evans CH . Gene therapy for rheumatoid arthritis. Curr Rheumatol Rep 2001; 3: 79–85.

    CAS  PubMed  Google Scholar 

  28. Muller-Ladner U et al. Gene transfer of cytokine inhibitors into human synovial fibroblasts in the SCID mouse model. Arthritis Rheum 1999; 42: 490–497.

    CAS  PubMed  Google Scholar 

  29. Okamoto K et al. Induction of apoptosis in the rheumatoid synovium by Fas ligand gene transfer. Gene Therapy 1998; 5: 331–338.

    CAS  PubMed  Google Scholar 

  30. Triantaphyllopoulos KA, Williams RO, Tailor H, Chernajovsky Y . Amelioration of collagen-induced arthritis and suppression of interferon-gamma, interleukin-12, and tumor necrosis factor alpha production by interferon-beta gene therapy. Arthritis Rheum 1999; 42: 90–99.

    CAS  PubMed  Google Scholar 

  31. Chernajovsky Y et al. Pathogenic lymphoid cells engineered to express TGF beta 1 ameliorate disease in a collagen-induced arthritis model. Gene Therapy 1997; 4: 553–559.

    CAS  PubMed  Google Scholar 

  32. Kim SH et al. Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J Immunol 2001; 166: 3499–3505.

    CAS  PubMed  Google Scholar 

  33. Lozier JN et al. Toxicity of a first-generation adenoviral vector in rhesus macaques. Hum Gene Ther 2002; 13: 113–124.

    CAS  PubMed  Google Scholar 

  34. Apparailly F et al. Tetracycline-inducible interleukin-10 gene transfer mediated by an adeno-associated virus: application to experimental arthritis. Hum Gene Ther 2002; 13: 1179–1188.

    CAS  PubMed  Google Scholar 

  35. Pan RY et al. Therapy and prevention of arthritis by recombinant adeno-associated virus vector with delivery of interleukin-1 receptor antagonist. Arthritis Rheum 2000; 43: 289–297.

    CAS  PubMed  Google Scholar 

  36. Conrad CK et al. Safety of single-dose administration of an adeno-associated virus (AAV)- CFTR vector in the primate lung. Gene Therapy 1996; 3: 658–668.

    CAS  PubMed  Google Scholar 

  37. Muller-Ladner U et al. Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective. J Immunol 1997; 158: 3492–3498.

    CAS  PubMed  Google Scholar 

  38. Le CH, Nicolson AG, Morales A, Sewell KL . Suppression of collagen-induced arthritis through adenovirus-mediated transfer of a modified tumor necrosis factor alpha receptor gene. Arthritis Rheum 1997; 40: 1662–1669.

    CAS  PubMed  Google Scholar 

  39. Ghivizzani SC et al. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc Natl Acad Sci USA 1998; 95: 4613–4618.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tak PP et al. Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation. Arthritis Rheum 2001; 44: 1897–1907.

    CAS  PubMed  Google Scholar 

  41. Boyle DL et al. Intra-articular IL-4 gene therapy in arthritis: anti-inflammatory effect and enhanced th2activity. Gene Therapy 1999; 6: 1911–1918.

    CAS  PubMed  Google Scholar 

  42. Woods JM et al. Interleukin-13 gene therapy reduces inflammation, vascularization, and bony destruction in rat adjuvant-induced arthritis. Hum Gene Ther 2002; 13: 381–393.

    CAS  PubMed  Google Scholar 

  43. Zhang H et al. Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J Clin Invest 1997; 100: 1951–1957.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Goossens PH et al. Feasibility of adenovirus-mediated nonsurgical synovectomy in collagen-induced arthritis-affected rhesus monkeys. Hum Gene Ther 1999; 10: 1139–1149.

    CAS  PubMed  Google Scholar 

  45. Kim JM et al. Angiostatin gene transfer as an effective treatment strategy in murine collagen-induced arthritis. Arthritis Rheum 2002; 46: 793–801.

    CAS  PubMed  Google Scholar 

  46. Yin G et al. Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol Ther 2002; 5: 547–554.

    CAS  PubMed  Google Scholar 

  47. Evans CH, Ghivizzani SC, Oligino TJ, Robbins PD . Gene therapy for autoimmune disorders. J Clin Immunol 2000; 20: 334–346.

    CAS  PubMed  Google Scholar 

  48. Evans CH et al. Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis. Hum Gene Ther 1996; 7: 1261–1280.

    CAS  PubMed  Google Scholar 

  49. Goossens PH et al. The effect of promoter strength in adenoviral vectors in hyperplastic synovium. Clin Exp Rheumatol 2000; 18: 547–552.

    CAS  PubMed  Google Scholar 

  50. Lucchinetti C et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47: 707–717.

    CAS  PubMed  Google Scholar 

  51. Brok HP et al. Non-human primate models of multiple sclerosis. Immunol Rev 2001; 183: 173–185.

    CAS  PubMed  Google Scholar 

  52. Genain CP, Hauser SL . Experimental allergic encephalomyelitis in the New World monkey Callithrix jacchus. Immunol Rev 2001; 183: 159–172.

    CAS  PubMed  Google Scholar 

  53. t Hart BA et al. A new primate model for multiple sclerosis in the common marmoset. Immunol Today 2000; 21: 290–297.

    CAS  Google Scholar 

  54. t Hart BA et al. Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am J Pathol 1998; 153: 649–663.

    Google Scholar 

  55. Antunes SG et al. The common marmoset: a new world primate species with limited Mhc class II variability. Proc Natl Acad Sci USA 1998; 95: 11745–11750.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Brok HP et al. Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T cell epitope pMOG24-36 is presented by a monomorphic MHC class II molecule. J Immunol 2000; 165: 1093–1101.

    CAS  PubMed  Google Scholar 

  57. Genain CP et al. Prevention of autoimmune demyelination in non-human primates by a cAMP- specific phosphodiesterase inhibitor. Proc Natl Acad Sci USA 1995; 92: 3601–3605.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brehm U, Piddlesden SJ, Gardinier MV, Linington C . Epitope specificity of demyelinating monoclonal autoantibodies directed against the human myelin oligodendrocyte glycoprotein (MOG). J Neuroimmunol 1999; 97: 9–15.

    CAS  PubMed  Google Scholar 

  59. Genain CP et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 1995; 96: 2966–2974.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. McFarland HI et al. Determinant spreading associated with demyelination in a nonhuman primate model of multiple sclerosis. J Immunol 1999; 162: 2384–2390.

    CAS  PubMed  Google Scholar 

  61. Blezer ELA, Brok HPM, Nicolay K, t Hart BA . Quantifying the progressive inflammatory demyelination of brain white matter in MOG-immunized common marmosets with magnetic resonance imaging. 2002, submitted.

  62. Laman JD et al. Protection of marmoset monkeys against EAE by treatment with a murine antibody blocking CD40 (mu5D12). Eur J Immunol 2002; 32: 2218–2228.

    CAS  PubMed  Google Scholar 

  63. Boon L et al. Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. J Immunol 2001; 167: 2942–2949.

    CAS  PubMed  Google Scholar 

  64. Constantinescu CS et al. IL-12 reverses the suppressive effect of the CD40 ligand blockade on experimental autoimmune encephalomyelitis (EAE). J Neurol Sci 1999; 171: 60–64.

    CAS  PubMed  Google Scholar 

  65. Chang JT, Segal BM, Shevach EM . Role of costimulation in the induction of the IL-12/IL-12 receptor pathway and the development of autoimmunity. J Immunol 2000; 164: 100–106.

    CAS  PubMed  Google Scholar 

  66. Laman JD et al. Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus). J Neuroimmunol 1998; 86: 30–45.

    CAS  PubMed  Google Scholar 

  67. Brok HP et al. Prevention of experimental autoimmune enchephalomyelitis in common marmosets using a human anti-human IL-12 mAb. J Immunol 2002; 169: 6554–6563.

    CAS  PubMed  Google Scholar 

  68. Brok HPM et al. Immunization with MOG peptide 34-56, an immunodominant epitope in multiple sclerosis, evokes a heterogenous pattern of encephalomyelitus in an outbred group of rhesus monkeys (Macaca mulatta). 2002, submitted.

  69. Jonker M et al. Autoimmunity in non-human primates: the role of major histocompatibility complex and T cells, and implications for therapy. Hum Immunol 1991; 32: 31–40.

    CAS  PubMed  Google Scholar 

  70. Meinl E et al. Encephalitogenic potential of myelin basic protein-specific T cells isolated from normal rhesus macaques. Am J Pathol 1997; 150: 445–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. t Hart BA, Brok HP, Amor S, Bontrop RE . The major histocompatibility complex influences the ethiopathogenesis of MS-like disease in primates at multiple levels. Hum Immunol 2001; 62: 1371–1381.

    CAS  Google Scholar 

  72. de Vos AF et al. Redistribution of myelin antigens from demyelinating brain lesions to antigen presenting cells within cervical lymph nodes in monkeys with experimental autoimmune encephalomyelitis. J Immunol 2002; 169: 5415–5423.

    CAS  PubMed  Google Scholar 

  73. Lo EH, Singhal AB, Torchilin VP, Abbott NJ . Drug delivery to damaged brain. Brain Res Brain Res Rev 2001; 38: 140–148.

    CAS  PubMed  Google Scholar 

  74. Dal Canto RA et al. Local delivery of cytokines by retrovirally transduced antigen-specific TCR+ hybridoma cells in experimental autoimmune encephalomyelitis. Eur Cytokine Networks 1998; 9: 83–91.

    CAS  Google Scholar 

  75. Shaw MK et al. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 1997; 185: 1711–1714.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen LZ et al. Gene therapy in allergic encephalomyelitis using myelin basic protein- specific T cells engineered to express latent transforming growth factor-beta1. Proc Natl Acad Sci USA 1998; 95: 12516–12521.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Costa GL et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J Immunol 2001; 167: 2379–2387.

    CAS  PubMed  Google Scholar 

  78. Flugel A et al. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 2001; 31: 11–22.

    CAS  PubMed  Google Scholar 

  79. Willenborg DO, Fordham SA, Cowden WB, Ramshaw IA . Cytokines and murine autoimmune encephalomyelitis: inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand J Immunol 1995; 41: 31–41.

    CAS  PubMed  Google Scholar 

  80. Piccirillo CA, Prud'homme GJ . Prevention of experimental allergic encephalomyelitis by intramuscular gene transfer with cytokine-encoding plasmid vectors. Hum Gene Ther 1999; 10: 1915–1922.

    CAS  PubMed  Google Scholar 

  81. Croxford JL et al. Cytokine gene therapy in experimental allergic encephalomyelitis by injection of plasmid DNA-cationic liposome complex into the central nervous system. J Immunol 1998; 160: 5181–5187.

    CAS  PubMed  Google Scholar 

  82. Croxford JL, Feldmann M, Chernajovsky Y, Baker D . Different therapeutic outcomes in experimental allergic encephalomyelitis dependent upon the mode of delivery of IL-10: a comparison of the effects of protein, adenoviral or retroviral IL-10 delivery into the central nervous system. J Immunol 2001; 166: 4124–4130.

    CAS  PubMed  Google Scholar 

  83. Furlan R et al. Central nervous system delivery of interleukin 4 by a nonreplicative herpes simplex type 1 viral vector ameliorates autoimmune demyelination. Hum Gene Ther 1998; 9: 2605–2617.

    CAS  PubMed  Google Scholar 

  84. Furlan R et al. Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. J Immunol 2001; 167: 1821–1829.

    CAS  PubMed  Google Scholar 

  85. Poliani PL et al. Delivery to the central nervous system of a nonreplicative herpes simplex type 1 vector engineered with the interleukin 4 gene protects rhesus monkeys from hyperacute autoimmune encephalomyelitis. Hum Gene Ther 2001; 12: 905–920.

    CAS  PubMed  Google Scholar 

  86. Howard MK et al. High efficiency gene transfer to the central nervous system of rodents and primates using herpes virus vectors lacking functional ICP27 and ICP34.5. Gene Therapy 1998; 5: 1137–1147.

    CAS  PubMed  Google Scholar 

  87. Nakajima A et al. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 2001; 107: 1293–1301.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kramer R et al. Gene transfer through the blood–nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nat Med 1995; 1: 1162–1166.

    CAS  PubMed  Google Scholar 

  89. Dunbar CE . The use of nonhuman primate models to improve gene transfer into haematopoietic stem cells. J Intern Med 2001; 249: 329–338.

    CAS  PubMed  Google Scholar 

  90. Van Beusechem VW, Valerio D . Gene transfer into hematopoietic stem cells of nonhuman primates. Hum Gene Ther 1996; 7: 1649–1668.

    CAS  PubMed  Google Scholar 

  91. Hibino H et al. The common marmoset as a target preclinical primate model for cytokine and gene therapy studies. Blood 1999; 93: 2839–2848.

    CAS  PubMed  Google Scholar 

  92. Trono D . Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Therapy 2000; 7: 20–23.

    CAS  PubMed  Google Scholar 

  93. Dunbar C . Lentivirus get specific. Blood 2002; 99: 397.

    CAS  Google Scholar 

  94. Stephenson J . Studies illuminate cause of fatal reaction in gene-therapy trial. JAMA 2001; 285: 2570.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ronald Bontrop (BPRC), Dr JD Laman (Erasmus Medical Center Rotterdam) for critical reading of the manuscript, Dr Michel Vierboom for editing the manuscript, Mea van de Sman for secretarial assistance and Henk van Westbroek for the artwork. We are grateful to Professor Dr Tom Huizinga (LUMC, Leiden, The Netherlands) for providing Figure 2.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

t'Hart, B., Vervoordeldonk, M., Heeney, J. et al. Gene therapy in nonhuman primate models of human autoimmune disease. Gene Ther 10, 890–901 (2003). https://doi.org/10.1038/sj.gt.3302017

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302017

Keywords

This article is cited by

Search

Quick links