Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Selection of appropriate non-clinical animal models to ensure translatability of novel AAV-gene therapies to the clinic

Abstract

Gene Therapy Medicinal Products consist of a recombinant nucleic acid intended for the modulation or manipulation of a genetic sequence. A single administration of a novel gene therapy has the potential to be curative, with a durable long-term benefit to patients. Adeno-associated viral vectors have become the viral vector of choice for in vivo delivery of therapeutic transgenes as they are mildly immunogenic, can effectively transduce a variety of human tissues and cells, and have low levels of genomic integration. Central to the effective translation of data generated in discovery studies to the clinic is the selection of appropriate animal species for pivotal non-clinical studies. This review aims to support the selection of appropriate animal models for non-clinical studies to advance the development of novel adeno-associated virus gene therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Animal model selection.

Similar content being viewed by others

Data availability

There was no data used in this study. All sources of information for this review were found in currently published literature and are referenced accordingly.

References

  1. EMA. EMA - Guideline on the quality, non-clinical and clinical aspects of gene therapy medicinal products. 2018; Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-clinical-aspects-gene-therapy-medicinal-products_en.pdf.

  2. EPAR - Luxturna [Internet]. 2019. Available from: https://www.ema.europa.eu/en/documents/assessment-report/luxturna-epar-public-assessment-report_en.pdf.

  3. EPAR - Zolgensma [Internet]. 2020. Available from: https://www.ema.europa.eu/en/documents/assessment-report/zolgensma-epar-public-assessment-report_en.pdf.

  4. EMA. EPAR - Glybera [Internet]. 2012. Available from: https://www.ema.europa.eu/en/documents/assessment-report/glybera-epar-public-assessment-report_en.pdf.

  5. Roctavian-EMA [Internet]. 2022. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/roctavian-0.

  6. EMA Upstaza [Internet]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/upstaza.

  7. EMA. EPAR - Hemgenix [Internet]. 2022. Available from: https://www.ema.europa.eu/en/documents/assessment-report/hemgenix-epar-public-assessment-report_en.pdf.

  8. EMA. Guideline on quality, non-clinical and clinical requirements for investigational advanced therapy medicinal products in clinical trials [Internet]. 2019. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy_en.pdf.

  9. EMA. GUIDELINE ON THE NON-CLINICAL STUDIES REQUIRED BEFORE FIRST CLINICAL USE OF GENE THERAPY MEDICINAL PRODUCTS [Internet]. 2008. Available from: ema.europa.eu/en/documents/scientific-guideline/guideline-non-clinical-studies-required-first-clinical-use-gene-therapy-medicinal-products_en.pdf.

  10. Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti AA. systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun. 2022;13:1315.

  11. Prakash V, Moore M, Yáñez-Muñoz RJ. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther. 2016;24:465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirschner J, Cathomen T. Gene therapy for monogenic inherited disorders. Opportunities and challenges. Deutsches Arzteblatt Int. 2020;117:878–85.

  13. Barron JC, Hurley EP, Parsons MP. Huntingtin and the Synapse. Front Cell Neurosci. 2021;15:1–18.

    Article  Google Scholar 

  14. McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25:24–34.

    Article  CAS  PubMed  Google Scholar 

  15. Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol [Internet]. 2020;16:529–46. Available from: https://doi.org/10.1038/s41582-020-0389-4.

    Article  PubMed  Google Scholar 

  16. Oura S, Noda T, Morimura N, Hitoshi S, Nishimasu H, Nagai Y, et al. Precise CAG repeat contraction in a Huntington’s Disease mouse model is enabled by gene editing with SpCas9-NG. Commun Biol. 2021;4:771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, et al. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol. 2015;230:259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balakrishnan B, Jayandharan G. Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Curr Gene Ther. 2014;14:86–100.

    Article  CAS  PubMed  Google Scholar 

  20. Wu Z, Asokan A, Samulski RJ. Adeno-associated Virus Serotypes: Vector Toolkit for Human Gene Therapy. Mol Ther. 2006;14:316–27.

    Article  CAS  PubMed  Google Scholar 

  21. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues. J Virol. 2004;78:6381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agbandje-McKenna M, Kleinschmidt J. AAV capsid structure and cell interactions. Methods Mol Biol. 2011;807:47–92.

    Article  CAS  PubMed  Google Scholar 

  23. Weinmann J, Grimm D. Next-generation AAV vectors for clinical use: an ever-accelerating race. Virus Genes. 2017;53:707–13.

    Article  CAS  PubMed  Google Scholar 

  24. Ertl HCJ. T Cell-Mediated Immune Responses to AAV and AAV Vectors. Front Immunol. 2021;12:1–11.

    Article  Google Scholar 

  25. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21:704–12.

    Article  CAS  PubMed  Google Scholar 

  26. Grimm D, Zolotukhin S. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal-Tailored Acceleration of AAV Evolution. Mol Ther. 2015;23:1819–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kotterman MA, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15:445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartel M, Schaffer D, Büning H. Enhancing the clinical potential of aav vectors by capsid engineering to evade pre-existing immunity. Front Microbiol. 2011;2:204.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther. 2012;19:694–700.

    Article  CAS  PubMed  Google Scholar 

  30. Au HKE, Isalan M, Mielcarek M. Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Front Med. 2022;8:809118.

    Article  Google Scholar 

  31. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduc Targeted Ther. 2021;6:53.

    Article  CAS  Google Scholar 

  32. Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards clinical implementation of adeno-associated virus (Aav) vectors for cancer gene therapy: Current status and future perspectives. Cancers. 2020;12:1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonçalves MAFV. Adeno-associated virus: From defective virus to effective vector. Virol J. 2005;2:1–17.

    Article  Google Scholar 

  34. Erles K, Rohde V, Thaele M, Roth S, Edler L, Schlehofer JR. DNA of adeno-associated virus (AAV) in testicular tissue and in abnormal semen samples. Hum Reprod. 2001;16:2333–7.

    Article  CAS  PubMed  Google Scholar 

  35. He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med. 2021;99:593–617.

    Article  PubMed  Google Scholar 

  36. Arruda VR, Fields PA, Milner R, Wainwright L, De Miguel MP, Donovan PJ, et al. Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. Mol Ther. 2001;4:586–92.

    Article  CAS  PubMed  Google Scholar 

  37. Favaro P, Downey HD, Shangzhen Zhou J, Fraser Wright J, Hauck B, Mingozzi F, et al. Host and vector-dependent effects on the risk of germline transmission of AAV vectors. Mol Ther. 2009;17:1022–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaudet D, Méthot J, Déry S, Brisson D, Essiembre C, Tremblay G, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPL S447X) gene therapy for lipoprotein lipase deficiency: An open-label trial. Gene Ther. 2013;20:361–9.

    Article  CAS  PubMed  Google Scholar 

  39. Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther - Methods Clin Dev. 2018;8:87–104. Available from: https://doi.org/10.1016/j.omtm.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  40. Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther. 2008;15:817–22.

    Article  CAS  PubMed  Google Scholar 

  41. Valdmanis PN, Lisowski L, Kay MA. RAAV-Mediated tumorigenesis: Still unresolved after an AAV assault. Mol Ther. 2012;20:2014–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li H, Malani N, Hamilton SR, Schlachterman A, Bussadori G, Edmonson SE, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood. 2011;117:3311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. At FDA meeting, gene therapy experts wrestle with field’s blindspots [Internet]. 2021. Available from: https://www.biopharmadive.com/news/fda-gene-therapy-meeting-safety-cancer-liver/606088/.

  44. Chandler RJ, LaFave MC, Varshney GK, Burgess SM, Venditti CP. Genotoxicity in mice following AAV gene delivery: A safety concern for human gene therapy? Mol Ther. 2016;24:198–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaiser J. Liver tumor in gene therapy recipient raises concerns about virus widely used in treatment. Science. 2020. Available from: https://www.science.org/content/article/liver-tumor-gene-therapy-recipient-raises-concerns-about-virus-widely-used-treatment#:~:text=Investigation%20of%20hemophilia%20patient%20will,associated%20virus%20in%20causing%20cancer&text=It's%20troubling%20news%20that%20gene,has%20developed%20a%20liver%20tumor.

  46. Bulaklak K, Gersbach CA. The once and future gene therapy. Nat Commun. 2020;11:5820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bryant LM, Christopher DM, Giles AR, Hinderer C, Rodriguez JL, Smith JB, et al. Lessons learned from the clinical development and market authorization of Glybera. Human Gene Ther. Clin Develop. 2013;24:55–64.

    Article  CAS  Google Scholar 

  48. Senior M. After Glybera’s withdrawal, what’s next for gene therapy? Nat Biotechnol. 2017;35:491–2.

    Article  CAS  PubMed  Google Scholar 

  49. National Hemophilia Foundation [Internet]. 2022. Available from: https://www.hemophilia.org/news/biomarin-announces-delay-in-application-to-fda.

  50. Ertl HCJ. Immunogenicity and toxicity of AAV gene therapy. Front Immunol. 2022;13:975803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hordeaux J, Buza EL, Dyer C, Goode T, Mitchell TW, Richman L, et al. Adeno-Associated Virus-Induced Dorsal Root Ganglion Pathology. Hum Gene Ther. 2020;31:808–18.

    Article  CAS  PubMed  Google Scholar 

  52. FDA. Cellular, Tissue, and Gene Therapies Advisory Committee (CTGTAC) Meeting #70: Toxicity Risks of Adeno-associated Virus (AAV) Vectors for Gene Therapy [Internet]. 2021. Available from: https://www.fda.gov/media/151599/download.

  53. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther. 2018;29:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Belur LR, Scott McIvor R, et al. Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat. 2014;8:42.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bolt MW, Brady JT, Whiteley LO, Khan KN. Development challenges associated with raav-based gene therapies. J Toxicol Sci. 2021;46:57–68.

    Article  CAS  PubMed  Google Scholar 

  56. MHRA. Horizon Scanning Case Study: Developing standards for Adeno-associated virus gene therapies [Internet]. 2022. Available from: https://www.gov.uk/government/case-studies/horizon-scanning-case-study-developing-standards-for-adeno-associated-virus-gene-therapies.

  57. 2022. https://ct.catapult.org.uk/news/regulatory-round-up-november-2022-2 Catapult C and G. Regulatory Round up - November 2022 [Internet].

  58. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol. 2011;18:1586–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Human Gene Ther Methods. 2013;24:59–67.

    Article  CAS  Google Scholar 

  60. Sehara Y, Fujimoto KI, Ikeguchi K, Katakai Y, Ono F, Takino N, et al. Persistent Expression of Dopamine-Synthesizing Enzymes 15 Years after Gene Transfer in a Primate Model of Parkinson’s Disease. Hum Gene Ther Clin Dev. 2017;28:74–79.

    Article  CAS  PubMed  Google Scholar 

  61. Kishimoto TK, Samulski RJ. Addressing high dose AAV toxicity – ‘one and done’ or ‘slower and lower’? Expert Opin Biol Ther. 2022;22:1067–71. https://www.tandfonline.com/doi/full/10.1080/14712598.2022.2060737.

    Article  PubMed  Google Scholar 

  62. Zhong C, Jiang W, Wang Y, Sun J, Wu X, Zhuang Y, et al. Repeated Systemic Dosing of Adeno-Associated Virus Vectors in Immunocompetent Mice after Blockade of T Cell Costimulatory Pathways. Hum Gene Ther. 2022;33:290–300.

    Article  CAS  PubMed  Google Scholar 

  63. Tong A. One of Pfizer’s Duchenne gene therapy trials put on hold in wake of patient death as high-dose AAV concerns still cloud field [Internet]. Endpoint News. 2021. Available from: https://endpts.com/one-of-pfizers-duchenne-gene-therapy-trials-put-on-hold-in-wake-of-patient-death-as-high-dose-aav-concerns-still-cloud-field/.

  64. High-dose AAV gene therapy deaths. Nat Biotechnol. 2020;38:905–16.

  65. Philippidis A. After Third Death, Audentes’ AT132 Remains on Clinical Hold. Human Gene Ther. 2020;31:908–10.

    Article  CAS  Google Scholar 

  66. Philippidis A. Fourth Boy Dies in Clinical Trial of Astellas’ AT132. Hum Gene Ther. 2021;32:1008–10.

    Article  CAS  PubMed  Google Scholar 

  67. Fourth trial volunteer dies in Astellas gene therapy study. 2021; Available from: https://www.biopharmadive.com/news/astellas-gene-therapy-trial-death-fourth-audentes/606508/.

  68. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther. 2021;29:464–88.

    Article  CAS  PubMed  Google Scholar 

  69. Burdett T, Nuseibeh S. Changing trends in the development of AAV-based gene therapies: a meta-analysis of past and present therapies. Gene Ther [Internet]. 2022; Available from: https://www.nature.com/articles/s41434-022-00363-0.

  70. Benhar I, London A, Schwartz M. The privileged immunity of immune privileged organs: The case of the eye. Front Immunol. 2012;3:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: Hiding in plain sight. Immunol Rev. 2006;213:48–65.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Arck P, Solano ME, Walecki M, Meinhardt A. The immune privilege of testis and gravid uterus: Same difference? Mol Cell Endocrinol. 2014;382:509–20.

    Article  CAS  PubMed  Google Scholar 

  73. Verdera HC, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther. 2020;28:723–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clinical review Luxturna [Internet]. Available from: https://www.fda.gov/files/vaccines%2Cblood%26biologics/published/Clinical-Review--December-16--2017---LUXTURNA.pdf.

  75. Cullis PR, Hope MJ. Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol Ther. 2017;25:1467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kulkarni JA, Cullis PR, Van Der Meel R. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Ther. 2018;28:146–57.

    Article  CAS  PubMed  Google Scholar 

  77. Sheridan C. Why gene therapies must go virus-free. Nat Biotechnol. 2023;41:737–44. https://www.nature.com/articles/s41587-023-01824-6#:~:text=Ultimately%2C.

    Article  CAS  PubMed  Google Scholar 

  78. Kuzmin DA, Shutova MV, Johnston NR, Smith OP, Fedorin VV, Kukushkin YS, et al. The clinical landscape for AAV gene therapies. Nat Rev Drug Discov. 2021;20:173–4.

    Article  CAS  PubMed  Google Scholar 

  79. Stagg NJ, Ghantous HN, Roth R, Hastings KL. Predictivity/Translatability of Toxicities Observed in Nonclinical Toxicology Studies to Clinical Safety Outcomes in Drug Development: Case Examples. Int J Toxicol. 2020;39:141–50.

    Article  PubMed  Google Scholar 

  80. Namdari R, Jones K, Chuang SS, Van Cruchten S, Dincer Z, Downes N, et al. Species selection for nonclinical safety assessment of drug candidates: Examples of current industry practice. Regul Toxicol Pharmacol. 2021;126:1–16.

  81. Prior H, Haworth R, Labram B, Roberts R, Wolfreys A, Sewell F. Justification for species selection for pharmaceutical toxicity studies. Toxicol Res (Camb). 2020;9:758–70.

  82. EMA. YESCARTA - EPAR [Internet]. 2018. Available from: https://www.ema.europa.eu/en/documents/assessment-report/yescarta-epar-public-assessment-report_en.pdf.

  83. EMA. Tecartus - EPAR [Internet]. 2020. Available from: https://www.ema.europa.eu/en/documents/assessment-report/tecartus-epar-public-assessment-report_en.pdf.

  84. Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016;21:75–80. Available from: https://doi.org/10.1016/j.coviro.2016.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Son YW, Choi HN, Che JH, Kang BC, Yun JW. Advances in selecting appropriate non-rodent species for regulatory toxicology research: Policy, ethical, and experimental considerations. Regulatory Toxicol Pharmacol. 2020;116:104757.

    Article  CAS  Google Scholar 

  86. Cabanes-Creus M, Navarro RG, Liao SHY, Scott S, Carlessi R, Roca-Pinilla R, et al. Characterization of the humanized FRG mouse model and development of an AAV-LK03 variant with improved liver lobular biodistribution. Mol Ther - Methods Clin Dev. 2023;28:220–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Marcovich I, Baer NK, Shubina-Oleinik O, Eclov R, Beard CW, Holt JR. Optimized AAV Vectors for TMC1 Gene Therapy in a Humanized Mouse Model of DFNB7/11. Biomolecules. 2022;12:914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kingham R, Klasa G, Carver KH. Key Regulatory Guidelines for the Development of Biologics in the United States and Europe 1. In: Pharmaceutical Sciences Encyclopedia. 2013.

  89. Schmitt G, Barrow P, Stephan-Gueldner M. Alternatives to the Use of Nonhuman Primates in Regulatory Toxicology. In: The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment. 2015.

  90. Callejas D, Mann CJ, Ayuso E, Lage R, Grifoll I, Roca C, et al. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes. 2013;62:1718–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van der Laan JW, Brightwell J, McAnulty P, Ratky J, Stark C. Regulatory acceptability of the minipig in the development of pharmaceuticals, chemicals and other products. J Pharmacol Toxicol Methods. 2010;62:184–95.

  92. Ganderup NC, Harvey W, Mortensen JT, Harrouk W. The minipig as nonrodent species in toxicology - Where are we now? Int J Toxicol. 2012;31:507–28.

  93. Watano R, Ohmori T, Hishikawa S, Sakata A, Mizukami H. Utility of microminipigs for evaluating liver-mediated gene expression in the presence of neutralizing antibody against vector capsid. Gene Ther. 2020;27:427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Evers MM, Miniarikova J, Juhas S, Vallès A, Bohuslavova B, Juhasova J, et al. AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model. Mol Ther. 2018;26:2163–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Buckley LA, Chapman K, Burns-Naas LA, Todd MD, Martin PL, Lansita JA. Considerations regarding nonhuman primate use in safety assessment of biopharmaceuticals. Int J Toxicol. 2011;30:583–90.

  96. FDA. Nonclinical Considerations for Mitigating Nonhuman Primate Supply Constraints Arising from the COVID-19 Pandemic Guidance for Industry [Internet]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/nonclinical-considerations-mitigating-nonhuman-primate-supply-constraints-arising-covid-19-pandemic.

  97. Wozar F, Seitz I, Reichel F, Fischer MD. Importance of nonhuman primates as a model system for gene therapy development in ophthalmology. Klin Monbl Augenheilkd. 2022;239:270–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MS would like to thank Dr. Bhatnagar for useful conversations about the manuscript.

Funding

No specific funding was obtained for the writing of this manuscript. This was undertaken as part of the tasks assigned to Mark Singh and his colleagues at The Cell and Gene Therapy Catapult.

Author information

Authors and Affiliations

Authors

Contributions

MS and KM wrote the manuscript. PT and AB reviewed the manuscript and provided feedback.

Corresponding author

Correspondence to Mark Singh.

Ethics declarations

Competing interests

The authors declare that they have no competing interests and are full time employees of The Cell and Gene Therapy Catapult.

Ethical approval

No human or animal experiments were performed. This review was based on currently published literature and regulatory guidance.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Brooks, A., Toofan, P. et al. Selection of appropriate non-clinical animal models to ensure translatability of novel AAV-gene therapies to the clinic. Gene Ther 31, 56–63 (2024). https://doi.org/10.1038/s41434-023-00417-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00417-x

Search

Quick links