Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Combinations of IFN-γand IL-4 induce distinct profiles of dendritic cell-associated immunoregulatory properties

Abstract

Interferon gamma (IFN-γ) and interleukin-4 (IL-4) are not only generated during cell-mediated immunity (CMI) and humoral immunity (HI), but are also generated by innate immune cells in response to pathogenic factors. How these cytokines differentially effect the development of dendritic cell (DC)-associated immunoregulatory properties from progenitor cells during innate immunity is unresolved. To address this we have utilized a homogeneous DC progenitor-like cell line, MTHC-D2, as a model to examine cytokine-induced maturation of DCs. By 6 h IFN-γ induced genes that are important for antiviral activity and development of CMI, whereas IL-4 induced genes involved in cellular adhesion, uptake of extracellular antigen, suppression of cytotoxic T-cell responses, and that repair the extracellular matrix. By 48 h the cytokine stimulus had induced many properties characteristic of immature DCs; however, these were differentially effected by IFN-γ and IL-4. IFN-γ induced the greatest levels of costimulatory/ activation marker expression, and the highest levels of T-cell proliferation, whereas IL-4 induced the greatest levels of phagocytic activity. Stimulation of the cells with CD40 Ab enhanced the levels of costimulatory marker expression and T-cell stimulatory capacity of cells exposed to IFN-γ, but had little effect on cells exposed to IL-4 in the absence of IFN-γ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Banyer JL, Hamilton NH, Ramshaw IA, Ramsay AJ . Cytokines in innate and adaptive immunity. Rev Immunogenet 2000; 2: 359–373.

    CAS  PubMed  Google Scholar 

  2. dOstiani CF, Del Sero G, Bacci A, Montagnoli C, Spreca A, Mencacci A et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 2000; 191: 1661–1674.

    Article  CAS  Google Scholar 

  3. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  4. Leung KN, Mak NK, Fung MC, Hapel AJ . Synergistic effect of IL-4 and TNF-alpha in the induction of monocytic differentiation of a mouse myeloid leukaemic cell line (WEHI-3B JCS). Immunology 1994; 81: 65–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mak NK, Fung MC, Leung KN, Hapel AJ . Monocytic differentiation of a myelomonocytic leukemic cell (WEHI 3B JCS) is induced by tumour necrosis factor-alpha (TNF-alpha). Cell Immunol 1993; 150: 1–14.

    Article  Google Scholar 

  6. OConnell PJ . PhD Thesis. Cytokine regulated differentiation and apoptosis of Myb-transformed cell lines. In: Division of Immunology and Cell Biology. (ed) Australian National University: Canberra, 1996.

    Google Scholar 

  7. Gonda TJ, Macmillan EM, Townsend PV, Hapel AJ . Differentiation state and responses to hematopoietic growth factors of murine myeloid cells transformed by myb. Blood 1993; 82: 2813–2822.

    CAS  PubMed  Google Scholar 

  8. Girolomoni G, Lutz MB, Pastore S, Assmann CU, Cavani A, Ricciardi-Castagnoli P . Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin. Eur J Immunol 1995; 25: 2163–2169.

    Article  CAS  Google Scholar 

  9. Xu S, Ariizumi K, Caceres-Dittmar G, Edelbaum D, Hashimoto K, Bergstresser PR et al. Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J Immunol 1995; 154: 2697–2705.

    CAS  PubMed  Google Scholar 

  10. Takashima A, Matsue H . Development and testing of dendritic cell lines. In: M. T. a. T. Lotze, AW. (ed) Dendritic Cells: Biology and Clinical Applications. Academic Press: New York, 2001, pp. 165–177.

    Chapter  Google Scholar 

  11. Parr RL, Fung L, Reneker J, Myers-Mason N, Leibowitz JL, Levy G . Association of mouse fibrinogen-like protein with murine hepatitis virus-induced prothrombinase activity. J Virol 1995; 69: 5033–5038.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Toyoda T, Asano Y, Ishihama A . Role of GTPase activity of murine Mx1 protein in nuclear localization and anti-influenza virus activity. J Gen Virol 1995; 76: 1867–1869.

    Article  CAS  Google Scholar 

  13. Melen, K, Julkunen, I . Mutational analysis of murine Mx1 protein: GTP binding core domain is essential for anti-influenza A activity. Virology 1994; 205: 269–279.

    Article  CAS  Google Scholar 

  14. Chelbi-Alix MK, de The H . Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 1999; 18: 935–941.

    Article  CAS  Google Scholar 

  15. Siveke JT, Hamann A . T helper 1 and T helper 2 cells respond differentially to chemokines. J Immunol 1998; 160: 550–554.

    CAS  PubMed  Google Scholar 

  16. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP et al. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 1998; 187: 2009–2021.

    Article  CAS  Google Scholar 

  17. Thiele DL, McGuire MJ, Lipsky PE . A selective inhibitor of dipeptidyl peptidase I impairs generation of CD8+T cell cytotoxic effector function. J Immunol 1997; 158: 5200–5210.

    CAS  PubMed  Google Scholar 

  18. Pham CT, Ley TJ . Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 1999; 96: 8627–8632.

    Article  CAS  Google Scholar 

  19. Gazzinelli RT, Eltoum I, Wynn TA, Sher A . Acute cerebral toxoplasmosis is induced by in vivo neutralization of TNF-alpha and correlates with the downregulated expression of inducible nitric oxide synthase and other markers of macrophage activation. J Immunol 1993; 151: 3672–3681.

    CAS  PubMed  Google Scholar 

  20. Cobbold S, Waldmann H . Infectious tolerance. Curr Opin Immunol 1998; 10: 518–524.

    Article  CAS  Google Scholar 

  21. Lee WC, Wan YH, Li W, Fu F, Sime PJ, Gauldie J et al. Enhancement of dendritic cell tolerogenicity by genetic modification using adenoviral vectors encoding cDNA for TGF beta 1. Transplant Proc 1999; 31: 1195.

    Article  CAS  Google Scholar 

  22. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998; 4: 594–600.

    Article  CAS  Google Scholar 

  23. Aubin J . Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem 1979; 27: 36–43.

    Article  CAS  Google Scholar 

  24. Andersson H, Baechi T, Hoechi M, Richter C . Autofluorescence of living cells. J Microsc 1998; 191: 1–7.

    Article  CAS  Google Scholar 

  25. Yamada N, Katz SI . Generation of mature dendritic cells from a CD14+cell line (XS52) by IL-4, TNF-alpha, IL-1 beta, and agonistic anti-CD40 monoclonal antibody. J Immunol 1999; 163: 5331–5337.

    CAS  PubMed  Google Scholar 

  26. Lutz MB, Abmann CU, Girolomoni G, Ricciardi-Castagnoli P . Different cytokines regulate antigen uptake and presentation of a precursor dendritic cell line. Eur J Immunol 1996; 26: 586–594.

    Article  CAS  Google Scholar 

  27. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  CAS  Google Scholar 

  28. Shortman K . Burnet oration: dendritic cells: multiple subtypes, multiple origins, multiple functions. Immunol Cell Biol 2000; 78: 161–165.

    Article  CAS  Google Scholar 

  29. Heath WR, Carbone FR . Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001; 19: 47–64.

    Article  CAS  Google Scholar 

  30. Parish CR . Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 1999; 77: 499–508.

    Article  CAS  Google Scholar 

  31. Ma X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 1996; 183: 147–157.

    Article  CAS  Google Scholar 

  32. Koch F, Stanzl U, Jennewein P, Janke K, Heufler C, Kampgen E et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10 [published erratum appears in J Exp Med 1996 October 1;184(4):following 1590]. J Exp Med 1996; 184: 741–746.

    Article  CAS  Google Scholar 

  33. Gillessen S, Carvajal D, Ling P, Podlaski FJ, Stremlo DL, Familletti PC et al. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Immunol 1995; 25: 200–206.

    Article  CAS  Google Scholar 

  34. Ling P, Gately MK, Gubler U, Stern AS, Lin P, Hollfelder K et al. Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J Immunol 1995; 154: 116–127.

    CAS  Google Scholar 

  35. Mattner F, Fischer S, Guckes S, Jin S, Kaulen H, Schmitt E et al. The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer. Eur J Immunol 1993; 23: 2202–2208.

    Article  CAS  Google Scholar 

  36. Hochrein H, O’Keeffe M, Luft T, Vandenabeele S, Grumont RJ, Maraskovsky E et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 2000; 192: 823–833.

    Article  CAS  Google Scholar 

  37. Braun MC, Lahey E, Kelsall BL . Selective suppression of IL-12 production by chemoattractants. J Immunol 2000; 164: 3009–3017.

    Article  CAS  Google Scholar 

  38. Li C, Goodrich JM, Yang X . Interferon-gamma (IFN-gamma) regulates production of IL-10 and IL-12 in human herpesvirus-6 (HHV-6)-infected monocyte/macrophage lineage. Clin Exp Immunol 1997; 109: 421–425.

    Article  CAS  Google Scholar 

  39. Trinchieri, G, Gerosa, F . Immunoregulation by interleukin-12. J Leukoc Biol 1996; 59: 505–511.

    Article  CAS  Google Scholar 

  40. Liu YJ, Kanzler H, Soumelis V, Gilliet M . Dendritic cell lineage, plasticity and cross-regulation. Nat Immunol 2001; 2: 585–589.

    Article  CAS  Google Scholar 

  41. Banyer JL, Hapel AJ . Myb-transformed hematopoietic cells as a model for monocyte differentiation into dendritic cells and macrophages. J Leukoc Biol 1999; 66: 217–223.

    Article  CAS  Google Scholar 

  42. Rolink A, Melchers F, Andersson J . The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity 1996; 5: 319–330.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Miss Leah Nolan for assistance in the preparation of this manuscript, Dr Rao Adavani and Mrs Gail DeCello at JCSMR, ANU for preparation of baculovirus produced cytokines used in these studies, Mrs Jane Olsen for Northern analysis, and Mr Hayden Henry for assistance in the literature screening of cDNA clones. Special thanks to Professors C Parish and I Ramshaw for supporting the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Banyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banyer, J., Halliday, D., Thomson, S. et al. Combinations of IFN-γand IL-4 induce distinct profiles of dendritic cell-associated immunoregulatory properties. Genes Immun 4, 427–440 (2003). https://doi.org/10.1038/sj.gene.6364005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364005

Keywords

This article is cited by

Search

Quick links