Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Identification of Notch target genes in uncommitted T-cell progenitors: no direct induction of a T-cell specific gene program

Abstract

Deregulated Notch signaling occurs in the majority of human T-ALL. During normal lymphoid development, activation of the Notch signaling pathway poses a T-cell fate on hematopoietic progenitors. However, the transcriptional targets of the Notch pathway are largely unknown. We sought to identify Notch target genes by inducing Notch signaling in human hematopoietic progenitors using two different methods: an intracellular signal through transfection of activated Notch and a Notch-receptor dependent signal by interaction with its ligand Delta1. Gene expression profiles were generated and evaluated with respect to expression profiles of immature thymic subpopulations. We confirmed HES1, NOTCH1 and NRARP as Notch target genes, but other reported Notch targets, including the genes for Deltex1, pre-T-cell receptor α and E2A, were not found to be differentially expressed. Remarkably, no induction of T-cell receptor gene rearrangements or transcription of known T-cell specific genes was found after activation of the Notch pathway. A number of novel Notch target genes, including the transcription factor TCFL5 and the HOXA cluster, were identified and functionally tested. Apparently, Notch signaling is essential to open the T-cell pathway, but does not initiate the T-cell program itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Staal FJ, Weerkamp F, Langerak AW, Hendriks RW, Clevers HC . Transcriptional control of t lymphocyte differentiation. Stem Cells 2001; 19: 165–179.

    Article  CAS  Google Scholar 

  2. Weerkamp F, Pike-Overzet K, Staal FJ . T-sing progenitors to commit. Trends Immunol 2006; 27: 125–131.

    Article  CAS  Google Scholar 

  3. Artavanis-Tsakonas S, Rand MD, Lake RJ . Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770–776.

    Article  CAS  Google Scholar 

  4. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 1995; 5: 1416–1423.

    Article  CAS  Google Scholar 

  5. Parreira L, Neves H, Simoes S . Notch and lymphopoiesis: a view from the microenvironment. Semin Immunol 2003; 15: 81–89.

    Article  CAS  Google Scholar 

  6. Harman BC, Jenkinson EJ, Anderson G . Entry into the thymic microenvironment triggers Notch activation in the earliest migrant T cell progenitors. J Immunol 2003; 170: 1299–1303.

    Article  CAS  Google Scholar 

  7. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EF, Baert MR et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005; 201: 1715–1723.

    Article  CAS  Google Scholar 

  8. Weerkamp F, Baert MR, Brugman MH, Dik WA, de Haas EF, Visser TP et al. The human thymus contains multipotent progenitors with T/B-lymphoid, myeloid and erythroid lineage potential. Blood 2006; 107: 3131–3137.

    Article  CAS  Google Scholar 

  9. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999; 10: 547–558.

    Article  CAS  Google Scholar 

  10. Wilson A, MacDonald HR, Radtke F . Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 2001; 194: 1003–1012.

    Article  CAS  Google Scholar 

  11. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S et al. Notch1 expression in early lymphopoiesis influences B vs T lineage determination. Immunity 1999; 11: 299–308.

    Article  CAS  Google Scholar 

  12. Dorsch M, Zheng G, Yowe D, Rao P, Wang Y, Shen Q et al. Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood 2002; 100: 2046–2055.

    CAS  Google Scholar 

  13. Jaleco AC, Neves H, Hooijberg E, Gameiro P, Clode N, Haury M et al. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 2001; 194: 991–1002.

    Article  CAS  Google Scholar 

  14. La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC . Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 2005; 105: 1431–1439.

    Article  CAS  Google Scholar 

  15. Lehar SM, Dooley J, Farr AG, Bevan MJ . Notch ligands Delta 1 and Jagged1 transmit distinct signals to T-cell precursors. Blood 2005; 105: 1440–1447.

    Article  CAS  Google Scholar 

  16. Schmitt TM, Zuniga-Pflucker JC . Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 2002; 17: 749–756.

    Article  CAS  Google Scholar 

  17. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  18. Weerkamp F, van Dongen JJ, Staal FJ . Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20: 1197–1205.

    Article  CAS  Google Scholar 

  19. Iso T, Sartorelli V, Chung G, Shichinohe T, Kedes L, Hamamori Y . HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol 2001; 21: 6071–6079.

    Article  CAS  Google Scholar 

  20. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A . Signalling downstream of activated mammalian Notch. Nature 1995; 377: 355–358.

    Article  CAS  Google Scholar 

  21. Kawamata S, Du C, Li K, Lavau C . Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 2002; 21: 3855–3863.

    Article  CAS  Google Scholar 

  22. Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R . The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 1999; 13: 1203–1210.

    Article  CAS  Google Scholar 

  23. Kaneta M, Osawa M, Sudo K, Nakauchi H, Farr AG, Takahama Y . A role for pref-1 and HES-1 in thymocyte development. J Immunol 2000; 164: 256–264.

    Article  CAS  Google Scholar 

  24. Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ . Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 2000; 13: 73–84.

    Article  CAS  Google Scholar 

  25. Reizis B, Leder P . Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 2002; 16: 295–300.

    Article  CAS  Google Scholar 

  26. Wolfer A, Wilson A, Nemir M, MacDonald HR, Radtke F . Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. Immunity 2002; 16: 869–879.

    Article  CAS  Google Scholar 

  27. Hoflinger S, Kesavan K, Fuxa M, Hutter C, Heavey B, Radtke F et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J Immunol 2004; 173: 3935–3944.

    Article  Google Scholar 

  28. Kimble J, Simpson P . The LIN-12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol 1997; 13: 333–361.

    Article  CAS  Google Scholar 

  29. Lamar E, Deblandre G, Wettstein D, Gawantka V, Pollet N, Niehrs C et al. Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev 2001; 15: 1885–1899.

    Article  CAS  Google Scholar 

  30. Deftos ML, He YW, Ojala EW, Bevan MJ . Correlating notch signaling with thymocyte maturation. Immunity 1998; 9: 777–786.

    Article  CAS  Google Scholar 

  31. Ronchini C, Capobianco AJ . Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21: 5925–5934.

    Article  CAS  Google Scholar 

  32. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20: 3427–3436.

    Article  CAS  Google Scholar 

  33. Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 1998; 18: 2230–2239.

    Article  CAS  Google Scholar 

  34. Carlesso N, Aster JC, Sklar J, Scadden DT . Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999; 93: 838–848.

    CAS  PubMed  Google Scholar 

  35. Staal FJ, Weerkamp F, Baert MR, van den Burg CM, van Noort M, de Haas EF et al. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion. J Immunol 2004; 172: 1099–1108.

    Article  CAS  Google Scholar 

  36. Jeannotte L, Lemieux M, Charron J, Poirier F, Robertson EJ . Specification of axial identity in the mouse: role of the Hoxa-5 (Hox1.3) gene. Genes Dev 1993; 7: 2085–2096.

    Article  CAS  Google Scholar 

  37. De Smedt M, Reynvoet K, Kerre T, Taghon T, Verhasselt B, Vandekerckhove B et al. Active form of Notch imposes T cell fate in human progenitor cells. J Immunol 2002; 169: 3021–3029.

    Article  CAS  Google Scholar 

  38. de Ridder D, Staal FJ, van Dongen JJ, Reinders MJ . Maximum significance clustering of oligonucleotide microarrays. Bioinformatics 2006; 22: 326–331.

    Article  CAS  Google Scholar 

  39. Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM, Aster JC et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 2005; 6: 663–670.

    Article  CAS  Google Scholar 

  40. Schmitt TM, Ciofani M, Petrie HT, Zuniga-Pflucker JC . Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J Exp Med 2004; 200: 469–479.

    Article  CAS  Google Scholar 

  41. Hattori N, Kawamoto H, Fujimoto S, Kuno K, Katsura Y . Involvement of transcription factors TCF-1 and GATA-3 in the initiation of the earliest step of T cell development in the thymus. J Exp Med 1996; 184: 1137–1147.

    Article  CAS  Google Scholar 

  42. Taghon T, Thys K, De Smedt M, Weerkamp F, Staal FJ, Plum J et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia 2003; 17: 1157–1163.

    Article  CAS  Google Scholar 

  43. Siep M, Sleddens-Linkels E, Mulders S, van Eenennaam H, Wassenaar E, Van Cappellen WA et al. Basic helix-loop-helix transcription factor Tcfl5 interacts with the Calmegin gene promoter in mouse spermatogenesis. Nucleic Acids Res 2004; 32: 6425–6436.

    Article  CAS  Google Scholar 

  44. Maruyama O, Nishimori H, Katagiri T, Miki Y, Ueno A, Nakamura Y . Cloning of TCFL5 encoding a novel human basic helix-loop-helix motif protein that is specifically expressed in primary spermatocytes at the pachytene stage. Cytogenet Cell Genet 1998; 82: 41–45.

    Article  CAS  Google Scholar 

  45. Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM . The influence of the MAPK pathway on T cell lineage commitment. Immunity 1997; 7: 609–618.

    Article  CAS  Google Scholar 

  46. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M . The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 2004; 18: 901–911.

    Article  CAS  Google Scholar 

  47. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 2003; 23: 14–25.

    Article  Google Scholar 

  48. Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK . Essential role of endothelial Notch1 in angiogenesis. Circulation 2005; 111: 1826–1832.

    Article  CAS  Google Scholar 

  49. Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW . Adult human hematopoietic cells provide functional hemangioblast activity. Blood 2004; 103: 133–135.

    Article  CAS  Google Scholar 

  50. Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89: 1922–1930.

    CAS  Google Scholar 

  51. Izon DJ, Rozenfeld S, Fong ST, Komuves L, Largman C, Lawrence HJ . Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 1998; 92: 383–393.

    CAS  Google Scholar 

  52. Taghon T, Stolz F, De Smedt M, Cnockaert M, Verhasselt B, Plum J et al. HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. Blood 2002; 99: 1197–1204.

    Article  CAS  Google Scholar 

  53. Aubin J, Chailler P, Menard D, Jeannotte L . Loss of Hoxa5 gene function in mice perturbs intestinal maturation. Am J Physiol 1999; 277: C965–C973.

    Article  CAS  Google Scholar 

  54. Taghon TN, David ES, Zuniga-Pflucker JC, Rothenberg EV . Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 2005; 19: 965–978.

    Article  CAS  Google Scholar 

  55. Huang EY, Gallegos AM, Richards SM, Lehar SM, Bevan MJ . Surface expression of Notch1 on thymocytes: correlation with the double-negative to double-positive transition. J Immunol 2003; 171: 2296–2304.

    Article  CAS  Google Scholar 

  56. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  Google Scholar 

  57. Radtke F, Wilson A, Mancini SJ, MacDonald HR . Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5: 247–253.

    Article  CAS  Google Scholar 

  58. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR . A stem cell molecular signature. Science 2002; 298: 601–604.

    Article  CAS  Google Scholar 

  59. Haddad R, Guardiola P, Izac B, Thibault C, Radich J, Delezoide AL et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 2004; 104: 3918–3926.

    Article  CAS  Google Scholar 

  60. Neves H, Weerkamp F, Gomes AC, Naber BA, Gameiro P, Becker JD et al. Effects of Delta1 and Jagged1 on early human hematopoiesis: correlation with expression of notch signaling-related genes in CD34+ cells. Stem Cells 2006; 24: 1328–1337.

    Article  CAS  Google Scholar 

  61. Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA 2006; 103: 3322–3326.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S17-GFP and S17-DL cell lines were kindly provided by H Neves (laboratory of Professor L Parreira, Faculdade de Medicina de Lisboa, Portugal). We thank M Baert, T Visser, P Pavljasevic and K Pike-Overzet for assistance with the HoxA5 transplantation experiments and M Comans-Bitter for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J T Staal.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weerkamp, F., Luis, T., Naber, B. et al. Identification of Notch target genes in uncommitted T-cell progenitors: no direct induction of a T-cell specific gene program. Leukemia 20, 1967–1977 (2006). https://doi.org/10.1038/sj.leu.2404396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404396

Keywords

This article is cited by

Search

Quick links