Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytokine-secreting herpes viral mutants effectively treat tumor in a murine metastatic colorectal liver model by oncolytic and T-cell-dependent mechanisms

Abstract

In this model of hepatic micrometastases, the antitumor efficacy and role of the T-cell and natural killer (NK) cell populations were studied for oncolytic herpes simplex virus type-1 (HSV-1) viral mutants containing the granulocyte-monocyte colony stimulating factor (GM-CSF (NV1034)) or interluken-12 (IL-12 (NV1042)) cytokine genes. These were compared to saline and control virus (NV1023) in vitro and in vivo. HSV-1 mutants were assessed for cytotoxicity, replication and cytokine expression in CT-26 cells. A syngeneic micrometastatic liver model was then established in naive and immune cell-depleted animals to assess the antitumor efficacy of these viruses. In vitro cytotoxicity and viral replication were similar for each virus, resulting in greater than 80 and 98% cytotoxicity at multiplicity of infection of 1 and 10, respectively. Peak viral titers were 25- to 50-fold higher than initial titer and were not significantly different between viruses. In vivo, all three viruses reduced metastases relative to control, but cytokine-secreting viruses did so with greater efficacy compared to NV1023. This effect was abrogated by T-cell depletion, but not NK-cell depletion. Single-agent therapy with oncolytic viral agents containing GM-CSF or IL-12 is effective in a murine model of liver metastases and likely involves direct viral oncolysis and actions of specific immune effector cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK . Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus. Ann Surg 1996; 224: 323–329; discussion 329–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreansky SS, He B, Gillespie GY, Soroceanu L, Markert J, Chou J et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA 1996; 93: 11313–11318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoon SS, Nakamura H, Carroll NM, Bode BP, Chiocca EA, Tanabe KK . An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J 2000; 14: 301–311.

    Article  CAS  PubMed  Google Scholar 

  4. Advani SJ, Chung SM, Yan SY, Gillespie GY, Markert JM, Whitley RJ et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res 1999; 59: 2055–2058.

    CAS  PubMed  Google Scholar 

  5. Kooby DA, Carew JF, Halterman MW, Mack JE, Bertino JR, Blumgart LH et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999; 13: 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  6. Cozzi PJ, Malhotra S, McAuliffe P, Kooby DA, Federoff HJ, Huryk B et al. Intravesical oncolytic viral therapy using attenuated, replication-competent herpes simplex viruses G207 and NV1020 is effective in the treatment of bladder cancer in an orthotopic syngeneic model. FASEB J 2001; 15: 1306–1308.

    Article  CAS  PubMed  Google Scholar 

  7. Bennett JJ, Kooby DA, Delman K, McAuliffe P, Halterman MW, Federoff H et al. Antitumor efficacy of regional oncolytic viral therapy for peritoneally disseminated cancer. J Mol Med 2000; 78: 166–174.

    Article  CAS  PubMed  Google Scholar 

  8. Markert J, Medlock MD, Rabkin SD, Gillepsie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant gioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  9. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  10. Jones T, Stern A, Lin R . Potential role of granulocyte-macrophage colony-stimulating factor as vaccine adjuvant. Eur J Clin Microbiol Infect Dis 1994; 13 (Suppl 2): S47–S53.

    Article  PubMed  Google Scholar 

  11. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu JS, Burwick JA, Dranoff G, Breakefield XO . Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 1997; 8: 1065–1072.

    Article  CAS  PubMed  Google Scholar 

  13. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM . Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 1998; 91: 222–230.

    CAS  PubMed  Google Scholar 

  14. Hayashi S, Emi N, Yokoyama I, Namii Y, Uchida K, Takagi H . Inhibition of establishment of hepatic metastasis in mice by combination gene therapy using both herpes simplex virus-thymidine kinase and granulocyte macrophage-colony stimulating factor genes in murine colon cancer. Cancer Gene Ther 1997; 4: 339–344.

    CAS  PubMed  Google Scholar 

  15. Toda M, Martuza RL, Rabkin SD . Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther 2000; 2: 324–329.

    Article  CAS  PubMed  Google Scholar 

  16. Dranoff G, Soiffer R, Lynch T, Mihm M, Jung K, Kolesar K et al. A phase I study of vaccination with autologous, irradiated melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor. Hum Gene Ther 1997; 8: 111–123.

    Article  CAS  PubMed  Google Scholar 

  17. Yao L, Pike SE, Setsuda J, Parekh J, Gupta G, Raffeld M et al. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood 2000; 96: 1900–1905.

    CAS  PubMed  Google Scholar 

  18. Duda DG, Sunamura M, Lozonschi L, Kodama T, Egawa S, Matsumoto G et al. Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res 2000; 60: 1111–1116.

    CAS  PubMed  Google Scholar 

  19. Yao L, Sgadari C, Furuke K, Bloom ET, Teruya-Feldstein J, Tosato G . Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 1999; 93: 1612–1621.

    CAS  PubMed  Google Scholar 

  20. Dias S, Boyd R, Balkwill F . IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer 1998; 78: 361–365.

    Article  CAS  PubMed  Google Scholar 

  21. Stern AS, Podlaski FJ, Hulmes JD, Pan YC, Quinn PM, Wolitzky AG et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci USA 1990; 87: 6808–6812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 1989; 170: 827–845.

    Article  CAS  PubMed  Google Scholar 

  23. D'Andrea A, Rengaraju M, Valiante NM, Chehimi J, Kubin M, Aste M et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J Exp Med 1992; 176: 1387–1398.

    Article  CAS  PubMed  Google Scholar 

  24. Pham-Nguyen KB, Yang W, Saxena R, Thung SN, Woo SL, Chen SH . Role of NK and T cells in IL-12-induced anti-tumor response against hepatic colon carcinoma. Int J Cancer 1999; 81: 813–819.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida Y, Tasaki K, Miyauchi M, Narita M, Takenaga K, Yamamoto H et al. Impaired tumorigenicity of human pancreatic cancer cells retrovirally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Ther 2000; 7: 324–331.

    Article  CAS  PubMed  Google Scholar 

  26. McKnight AJ, Zimmer GJ, Fogelman I, Wolf SF, Abbas AK . Effects of IL-12 on helper T cell-dependent immune responses in vivo. J Immunol 1994; 152: 2172–2179.

    CAS  PubMed  Google Scholar 

  27. Dunussi-Joannopoulos K, Runyon K, Erickson J, Schaub RG, Hawley RG, Leonard JP . Vaccines with interleukin-12-transduced acute myeloid leukemia cells elicit very potent therapeutic and long-lasting protective immunity. Blood 1999; 94: 4263–4273.

    CAS  PubMed  Google Scholar 

  28. Dunussi-Joannopoulos K, Leonard JP . Interleukin-12 gene therapy vaccines: directing the immune system against minimal residual leukemia. Leuk Lymphoma 2001; 41: 483–492.

    Article  CAS  PubMed  Google Scholar 

  29. Caruso M, Pham-Nguyen K, Kwong YL, Xu B, Kosai KI, Finegold M et al. Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc Natl Acad Sci USA 1996; 93: 11302–11306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toda M, Martuza RL, Rabkin SD . Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Therapy 2001; 8: 332–339.

    Article  CAS  PubMed  Google Scholar 

  31. Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H . Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 1999; 59: 4035–4041.

    CAS  PubMed  Google Scholar 

  32. Gambotto A, Tuting T, McVey DL, Kovesdi I, Tahara H, Lotze MT et al. Induction of antitumor immunity by direct intratumoral injection of a recombinant adenovirus vector expressing interleukin-12. Cancer Gene Ther 1999; 6: 45–53.

    Article  CAS  PubMed  Google Scholar 

  33. Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 2001; 12: 671–684.

    Article  CAS  PubMed  Google Scholar 

  34. Tahara H, Lotze MT, Robbins PD, Storkus WJ, Zitvogel L . IL-12 gene therapy using direct injection of tumors with genetically engineered autologous fibroblasts. Hum Gene Ther 1995; 6: 1607–1624.

    Article  CAS  PubMed  Google Scholar 

  35. Toda M, Martuza RL, Kojima H, Rabkin SD . In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic antitumor activity. J Immunol 1998; 160: 4457–4464.

    CAS  PubMed  Google Scholar 

  36. Andreansky S, He B, van Cott J, McGhee J, Markert JM, Gillespie GY et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Therapy 1998; 5: 121–130.

    Article  CAS  PubMed  Google Scholar 

  37. Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM . Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000; 97: 2208–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bennett JJ, Malhotra S, Wong RJ, Delman K, Zager J, St Louis M et al. Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer. Ann Surg 2001; 233: 819–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong RJ, Patel SG, Kim S, DeMatteo RP, Malhotra S, Bennett JJ et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 2001; 12: 253–265.

    Article  CAS  PubMed  Google Scholar 

  40. Meignier B, Longnecker R, Roizman B . In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 1999; 158: 602–614.

    Article  Google Scholar 

  41. Fong Y, Blumgart LH, Cohen AM . Surgical treatment of colorectal metastases to the liver. Ca Cancer J Clin 1995; 45: 50–62.

    Article  CAS  PubMed  Google Scholar 

  42. Wong RJ, Chan MK, Yu Z, Ghossein RA, Ngai I, Adusumilli PS et al. Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 2004; 10: 4509–4516.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by Grants RO1 CA75416 (YF), RO1 CA72632 (YF) and RO1 CA615524 (YF) from the National Institutes of Health grant, MBC-99366 (YF) from the American Cancer Society and the Byrne Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeRubertis, B., Stiles, B., Bhargava, A. et al. Cytokine-secreting herpes viral mutants effectively treat tumor in a murine metastatic colorectal liver model by oncolytic and T-cell-dependent mechanisms. Cancer Gene Ther 14, 590–597 (2007). https://doi.org/10.1038/sj.cgt.7701053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701053

Keywords

This article is cited by

Search

Quick links