Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Target RNA motif and target mRNAs of the Quaking STAR protein

Abstract

Quaking viable (Qkv) mice have developmental defects that result in their characteristic tremor. The quaking (Qk) locus expresses alternatively spliced RNA-binding proteins belonging to the STAR family. To characterize the RNA binding specificity of the QKI proteins, we selected for RNA species that bound QKI from random pools of RNAs and defined the QKI response element (QRE) as a bipartite consensus sequence NACUAAY-N1–20-UAAY. A bioinformatic analysis using the QRE identified the three known RNA targets of QKI and 1,430 new putative mRNA targets, of which 23 were validated in vivo. A large proportion of the mRNAs are implicated in development and cell differentiation, as predicted from the phenotype of the Qkv mice. In addition, 24% are implicated in cell growth and/or maintenance, suggesting a role for QKI in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of QKI-specific RNA sequences using SELEX.
Figure 2: RNAs that bound to QKI-5 and their consensus sequence.
Figure 3: Defining the QRE.
Figure 4: Defining optimal distance and structure between direct repeats in the QRE.
Figure 5: Mapping QREs within two known mRNA targets of QKI, MBP and EGR-2.
Figure 6: Identification of new mRNA targets for Quaking.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Hogan, E.L. & Greenfield, S. Animal models of genetic disorders of myelin. in Myelin (ed. Morell, P.) 489–534 (Plenum Press, New York, 1984).

    Google Scholar 

  2. Ebersole, T.A., Chen, Q., Justice, M.J. & Artzt, K. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Nat. Genet. 12, 260–265 (1996).

    Article  CAS  Google Scholar 

  3. Hardy, R.J. et al. Neural cell type-specific expression of QKI proteins is altered in the quaking viable mutant mice. J. Neurosci. 16, 7941–7949 (1996).

    Article  CAS  Google Scholar 

  4. Larocque, D. et al. Nuclear retention of MBP mRNAs in the Quaking viable mice. Neuron 36, 815–829 (2002).

    Article  CAS  Google Scholar 

  5. Larocque, D. et al. Protection of the p27KIP1 mRNA by quaking RNA binding proteins promotes oligodendrocyte differentiation. Nat. Neurosci. 8, 27–33 (2005).

    Article  CAS  Google Scholar 

  6. Darnell, R.B. Paraneoplastic neurologic disorders: windows into neuronal function and tumor immunity. Arch. Neurol. 61, 30–32 (2004).

    Article  Google Scholar 

  7. Lukong, K.E. & Richard, S. Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 1653, 73–86 (2003).

    CAS  PubMed  Google Scholar 

  8. Vernet, C. & Artzt, K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 13, 479–484 (1997).

    Article  CAS  Google Scholar 

  9. Wu, J.I., Reed, R.B., Grabowski, P.J. & Artzt, K. Function of quaking in myelination: regulation of alternative splicing. Proc. Natl. Acad. Sci. USA 99, 4233–4238 (2002).

    Article  CAS  Google Scholar 

  10. Li, Z., Zhang, Y., Li, D. & Feng, Y. Destabilization and mislocalization of the myelin basic protein mRNAs in quaking dysmyelination lacking the Qk1 RNA-binding proteins. J. Neurosci. 20, 4944–4953 (2000).

    Article  CAS  Google Scholar 

  11. Saccomanno, L. et al. The STAR protein QKI-6 is a translational repressor. Proc. Natl. Acad. Sci. USA 96, 12605–12610 (1999).

    Article  CAS  Google Scholar 

  12. Pilotte, J., Larocque, D. & Richard, S. Nuclear translocation controlled by alternatively spliced isoforms inactivates the QUAKING apoptotic inducer. Genes Dev. 15, 845–858 (2001).

    Article  CAS  Google Scholar 

  13. Li, Z. et al. Defective smooth muscle development in qkI-deficient mice. Dev. Growth Differ. 45, 449–462 (2003).

    Article  CAS  Google Scholar 

  14. Ryder, S.P., Frater, L.A, Abramovitz, D.L., Goodwin, E.B. & Williamson, J.R. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat. Struct. Mol. Biol. 11, 20–28 (2004).

    Article  CAS  Google Scholar 

  15. Francis, R., Barton, M.K., Kimbel, J. & Schedl, T. Control of oogenesis, germline proliferation and sex determination by the C. elegans gene gld-1. Genetics 139, 579–606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ryder, S.P. & Williamson, J.R. Specificity of the STAR/GSG domain protein Qk1: implications for the regulation of myelination. RNA 10, 1449–1458 (2004).

    Article  CAS  Google Scholar 

  17. Buckanovich, R.J. & Darnell, R.B. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol. Cell. Biol. 17, 3194–3201 (1997).

    Article  CAS  Google Scholar 

  18. Cox, R.D. et al. Contrasting effects of ENU induced embryonic lethal mutations of the quaking gene. Genomics 57, 333–341 (1999).

    Article  CAS  Google Scholar 

  19. Justice, M.J. & Bode, V.C. Three ENU-induced alleles of the murine quaking locus are recessive embryonic lethal mutations. Genet. Res. 51, 95–102 (1988).

    Article  CAS  Google Scholar 

  20. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  21. Jensen, K.B., Musunuru, K., Lewis, H.A., Burley, S.K. & Darnell, R.B. The tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 domain. Proc. Natl. Acad. Sci. USA 97, 5740–5745 (2000).

    Article  CAS  Google Scholar 

  22. Nabel-Rosen, H., Volohonsky, G., Reuveny, A., Zaidel-Bar, R. & Volk, T. Two isoforms of the Drosophila RNA binding protein, How, act in opposing directions to regulate tendon cell differentiation. Dev. Cell 2, 183–193 (2002).

    Article  CAS  Google Scholar 

  23. Nagarajan, R. et al. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30, 355–368 (2001).

    Article  CAS  Google Scholar 

  24. Dennis, G., Jr. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

  25. Rowitch, D.H. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409–419 (2004).

    Article  CAS  Google Scholar 

  26. Hardy, R.J. QKI expression is regulated during neuron-glial cell fate decisions. J. Neurosci. Res. 54, 46–57 (1998).

    Article  CAS  Google Scholar 

  27. Chen, T., Boisvert, F.M., Bazett-Jones, D.P. & Richard, S. A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol. Biol. Cell 10, 3015–3033 (1999).

    Article  CAS  Google Scholar 

  28. Itoh, M., Haga, I., Li, Q.-H. & Fujisawa, J.-I. Identification of cellular mRNA targets for RNA-binding protein Sam68. Nucleic Acids Res. 30, 5452–5464 (2002).

    Article  CAS  Google Scholar 

  29. Keene, J.D. Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proc. Natl. Acad. Sci. USA 98, 7018–7024 (2001).

    Article  CAS  Google Scholar 

  30. Liu, Z. et al. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 294, 1098–1102 (2001).

    Article  CAS  Google Scholar 

  31. Jan, E., Motzny, C.K., Graves, L.E. & Goodwin, E.B. The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 18, 258–269 (1999).

    Article  CAS  Google Scholar 

  32. Chen, T., Côté, J., Carvajal, H.V. & Richard, S. Identification of Sam68 arginine glycine-rich sequences capable of conferring non-specific RNA binding to the GSG domain. J. Biol. Chem. 276, 30803–30811 (2001).

    Article  CAS  Google Scholar 

  33. Lee, M.-H. & Schedl, T. Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev. 15, 2408–2420 (2001).

    Article  CAS  Google Scholar 

  34. Schumacher, B. et al. Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120, 357–368 (2005).

    Article  CAS  Google Scholar 

  35. Min, H., Turck, C.W., Nikolic, J.M. & Black, D.L. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11, 1023–1036 (1997).

    Article  CAS  Google Scholar 

  36. Stoss, O. et al. The STAR/GSG family protein rSLM-2 regulates the selection of alternative splice sites. J. Biol. Chem. 276, 8665–8673 (2001).

    Article  CAS  Google Scholar 

  37. Arning, S., Gruter, P., Bilbe, G. & Kramer, A. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 2, 794–810 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Berglund, J.A., Chua, K., Abovich, N., Reed, R. & Rosbash, M. The splicing factor BBP interacts specifically with the pre-mRNA branch-point sequence UACUAAC. Cell 89, 781–787 (1997).

    Article  CAS  Google Scholar 

  39. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  Google Scholar 

  40. Butcher, S.E. & Wickens, M. STAR-studded circuitry. Nat. Struct. Mol. Biol. 11, 2–3 (2004).

    Article  CAS  Google Scholar 

  41. Hardy, R.J., Lazzarini, R.A., Colman, D.R. & Friedrich, V.L., Jr. Cytoplasmic and nuclear localization of myelin basic proteins reveals heterogeneity among oligodendrocytes. J. Neurosci. Res. 46, 246–257 (1996).

    Article  CAS  Google Scholar 

  42. Wu, H.Y., Dawson, M.R.L., Reynolds, R. & Hardy, R.J. Expression of QKI proteins and MAP1B identifies actively myelinating oligodendrocytes in adult rat brain. Mol. Cell. Neurosci. 17, 292–302 (2001).

    Article  CAS  Google Scholar 

  43. Baehrecke, E.H. who encodes a KH RNA binding protein that functions in muscle development. Development 124, 1323–1332 (1997).

    CAS  PubMed  Google Scholar 

  44. Zorn, A.M. & Krieg, P.A. The KH domain protein encoded by quaking functions as a dimer and is essential for notochord development in Xenopus embryos. Genes Dev. 11, 2176–2190 (1997).

    Article  CAS  Google Scholar 

  45. Zaffran, S., Astier, M., Gratecos, D. & Semeriva, M. The held out wings (how) Drosophila gene encodes a putative RNA binding protein involved in the control of muscular and cardiac activity. Development 124, 2087–2098 (1997).

    CAS  PubMed  Google Scholar 

  46. Jones, A.R., Francis, R. & Schedl, T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev. Biol. 180, 165–183 (1996).

    Article  CAS  Google Scholar 

  47. Li, Z.Z. et al. Expression of Hqk encoding a KH RNA binding protein is altered in human glioma. Jpn. J. Cancer Res. 93, 167–177 (2002).

    Article  CAS  Google Scholar 

  48. Francis, R., Barton, M.K., Kimble, J. & Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Galarneau, A., Primeau, M., Trudeau, L.E. & Michnick, S.W. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619–622 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Scott for the bioinformatic analyses and F. Major, P. Wilkinson and J. Côté for helpful discussions. This work was supported by grant MOP57692 from the Canadian Institutes of Health Research (CIHR) and by funds from the Multiple Sclerosis Society of Canada. A.G. is a Research Student of the National Cancer Institute of Canada supported with funds provided by the Terry Fox Run. S.R. is an Investigator of the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Richard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Comparison of the RNA binding affinity of QKI, QKI-6 and QKI-7 using a selected sequence. (PDF 125 kb)

Supplementary Fig. 2

QKI-5, QKI-6 and Sam68 specific immunoprecipitations. (PDF 157 kb)

Supplementary Table 1

mRNA targets identified based on the identified consensus. (PDF 107 kb)

Supplementary Table 2

Matrix based on the nucleotides identified by SELEX (PDF 103 kb)

Supplementary Table 3

mRNA targets identified based on the matrix (Supplementary Table 2) and a fixed core or half site sequence. (PDF 68 kb)

Supplementary Table 4

mRNA classification of each hit based on gene annotation. (PDF 10 kb)

Supplementary Table 5

Substrates used for all T7 RNA MegaShortscript. (PDF 32 kb)

Supplementary Table 6

Primers used for RT-PCR. (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galarneau, A., Richard, S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 12, 691–698 (2005). https://doi.org/10.1038/nsmb963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing