Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel mode of RBD-protein recognition in the Y14–Mago complex

Abstract

Y14 and Mago are conserved eukaryotic proteins that associate with spliced mRNAs in the nucleus and remain associated at exon junctions during and after nuclear export. In the cytoplasm, Y14 is involved in mRNA quality control via the nonsense-mediated mRNA decay (NMD) pathway and, together with Mago, is involved in localization of osk (oskar) mRNA. We have determined the crystal structure of the complex between Drosophila melanogaster Y14 and Mago at a resolution of 2.5 Å. The structure reveals an atypical mode of protein–protein recognition mediated by an RNA-binding domain (RBD). Instead of binding RNA, the RBD of Y14 engages its RNP1 and RNP2 motifs to bind Mago. Using structure-guided mutagenesis, we show that Mago is also a component of the NMD pathway, and that its association with Y14 is essential for function. Heterodimerization creates a single structural platform that interacts with the NMD machinery via phylogenetically conserved residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Y14–Mago heterodimer.
Figure 2: Structure-based amino acid sequence alignments of Mago and Y14.
Figure 3: Main heterodimerization interface between Y14 and Mago.
Figure 4: Activity of human Y14 and Mago mutants in NMD.
Figure 5: Conserved molecular surfaces of the Y14–Mago heterodimer are involved in NMD.
Figure 6: RNA-binding properties of human Y14 and Mago.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Dreyfuss, G., Kim, N.V. & Kataoka, N. Messenger RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell. Biol. 3, 195–205 (2002).

    Article  CAS  Google Scholar 

  2. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 15, 6860–6869 (2000).

    Article  Google Scholar 

  3. Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033–3038 (2002).

    CAS  PubMed  Google Scholar 

  4. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense- mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  Google Scholar 

  5. Reichert, V.L., Le Hir, H., Jurica, M.S. & Moore, M.J. 5′ exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev. 16, 2778–2791 (2002).

    Article  CAS  Google Scholar 

  6. Kataoka, N. et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6, 673–682 (2000).

    Article  CAS  Google Scholar 

  7. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2, 1119–1124 (2001).

    Article  CAS  Google Scholar 

  8. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  Google Scholar 

  9. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  Google Scholar 

  10. Zhao, X.F., Nowak, N.J., Shows, T.B. & Aplan, P.D. MAGOH interacts with a novel RNA-binding protein. Genomics 63, 145–148 (2000).

    Article  CAS  Google Scholar 

  11. Kataoka, N., Diem, M.D., Kim, N.V., Yong, J. & Dreyfuss, G. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20, 6424–6433 (2001).

    Article  CAS  Google Scholar 

  12. Mingot, J.M., Kostka, S., Kraft, R., Hartmann, E. & Görlich, D. Importin 13: a novel mediator of nuclear import and export. EMBO J. 20, 3685–3694 (2001).

    Article  CAS  Google Scholar 

  13. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666–1674 (2001).

    Article  CAS  Google Scholar 

  14. Mohr, S.E., Dillon, S.T. & Boswell, R.E. The RNA-binding protein Tsunagi interacts with Magoh Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev. 15, 2886–2899 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, N.V., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor Upf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  Google Scholar 

  16. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001).

    Article  CAS  Google Scholar 

  17. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    Article  CAS  Google Scholar 

  18. Mickelm, D.R. et al. The mago nashi gene is required for the polarization of the oocyte and the formation of perpendicular axes in Drosophila. Curr. Biol. 7, 468–478 (1997).

    Article  Google Scholar 

  19. Newmark, P.A., Mohr, S.E., Gong, L. & Boswell, R.E. mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 124, 3197–3207 (1997).

    CAS  PubMed  Google Scholar 

  20. Burd, C.G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621 (1994).

    Article  CAS  Google Scholar 

  21. Varani, G. & Nagai, K. RNA recognition by RNP proteins during RNA processing. Annu. Rev. Biophys. Biomol. Struct. 27, 407–445 (1998).

    Article  CAS  Google Scholar 

  22. Hall, K.B. RNA-protein interactions. Curr. Opin. Struct. Biol. 12, 283–288 (2002).

    Article  CAS  Google Scholar 

  23. Price, S., Evan, P. & Nagai, K. Crystal structure of the spliceosomal U2B″-U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 645–649 (1998).

    Article  CAS  Google Scholar 

  24. Kielkopf, C.L., Rodionova, N.A., Green, M.R. & Burley, S.K. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106, 595–605 (2001).

    Article  CAS  Google Scholar 

  25. Mazza, C., Segref, A., Mattaj, I.W. & Cusack, S. Large-scale induced fit recognition of an m(7)GPG cap analogue by the human nuclear cap-binding complex. EMBO J. 21, 5548–5557 (2002).

    Article  CAS  Google Scholar 

  26. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  27. Shiels, J.C., Tuite, J.B., Nolan, S.J. & Baranger, A.M. Investigation of a conserved stacking interaction in target site recognition by the U1A protein. Nucleic Acids Res. 30, 550–558 (2002).

    Article  CAS  Google Scholar 

  28. Birney, E., Kumar, S. & Krainer, A.R. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 21, 5803–5816 (1993).

    Article  CAS  Google Scholar 

  29. Lu, J. & Hall, K.B. Tertiary structure of RBD2 and backbone dynamics of RBD1 and RBD2 of the human U1A protein determined by NMR spectroscopy. Biochemistry 36, 10393–19405 (1997).

    Article  CAS  Google Scholar 

  30. Rodrigues, J.P. et al. REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proc. Natl. Acad. Sci. USA 98, 1030–1035 (2001).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  32. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  33. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  34. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  35. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  36. Scherly, D. et al. Identification of the RNA binding segment of human U1 A protein and definition of its binding site on U1 snRNA. EMBO J. 8, 4163–4370 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to beamline scientists at DESY BW7A (Hamburg), Swiss Light Source X06SA (Zurich), Elettra (Trieste) and ESRF ID14-4 and ID14-1 (Grenoble) for assistance during data collection. We thank in particular M. Polentarutti and K. Djinovic (Elettra) for help with xenon derivatization. We thank N. Gehring, A. Kulozik and M. Hentze for communicating results on the NMD reporter assay before publication, and for the gift of the reporter constructs and λN-peptide–specific antibodies. We also thank I. Mattaj, P. Brick and A. Ladurner for critical reading of the manuscript. S.F. was supported by a Marie Curie Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Conti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fribourg, S., Gatfield, D., Izaurralde, E. et al. A novel mode of RBD-protein recognition in the Y14–Mago complex. Nat Struct Mol Biol 10, 433–439 (2003). https://doi.org/10.1038/nsb926

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing