Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine

Abstract

Pairing of a consensus sequence of the precursor (pre)-mRNA intron with a short region of the U2 small nuclear (sn)RNA during assembly of the eukaryotic spliceosome results in formation of a complementary helix of seven base pairs with a single unpaired adenosine residue. The 2′ OH of this adenosine, called the branch site, brings about nucleophilic attack at the pre-mRNA 5′ splice site in the first step of splicing. Another feature of this pairing is the phylogenetic conservation of a pseudouridine (ψ) residue in U2 snRNA nearly opposite the branch site. We show that the presence of this ψ in the pre-mRNA branch-site helix of Saccharomyces cerevisiae induces a dramatically altered architectural landscape compared with that of its unmodified counterpart. The ψ-induced structure places the nucleophile in an accessible position for the first step of splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Branch site sequences.
Figure 2: 2-Aminopurine (2AP) fluorescence emission spectra.
Figure 3: Structural models of branch site duplexes.
Figure 4: Structural model of ψ-modified branch site duplex.
Figure 5: Comparison of ψBP and uBP.
Figure 6: Comparison of nucleophile positioning in three splicing systems.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Moore, M., Query, C. & Sharp, P. in The RNA World (eds Gesteland, R.F. & Atkins, J.F.) 303–357 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1993).

    Google Scholar 

  2. Madhani, H.D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Annu. Rev. Genet. 28, 1–26 (1994).

    Article  CAS  Google Scholar 

  3. Valadkhan, S. & Manley, J.L. Splicing-related catalysis by protein-free snRNAs. Nature 413, 701–707 (2001).

    Article  CAS  Google Scholar 

  4. Lane, B.G. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 1–20 (ASM Press, Washington, D.C.; 1998).

    Book  Google Scholar 

  5. Yu, Y.-T., Shu, M.-D. & Steitz, J.A. Modification of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 17, 5783–5795 (1998).

    Article  CAS  Google Scholar 

  6. Reddy, R. & Busch, H. in Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles (ed. Birnstiel, M.L.) 1–37 (Springer-Verlag Press, Berlin; 1988).

    Book  Google Scholar 

  7. Patton, J., Jacobsen, M. & Pederson, T. Pseudouridine formation in small nuclear RNA. Proc. Natl. Acad. Sci. USA 91, 3324–3328 (1994).

    Article  CAS  Google Scholar 

  8. Gu, J., Patton, J., Shimba, S. & Reddy, R. Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA 2, 909–918 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Massenet, S. et al. Pseudouridine mapping in spliuceosomal U snRNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol. Cell. Biol. 19, 2142–2154 (1999).

    Article  CAS  Google Scholar 

  10. McPheeters, D.S. & Abelson, J. Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. Cell 71, 819–831 (1992).

    Article  CAS  Google Scholar 

  11. Pascolo, E. & Seraphin, B. The branchpoint residue is recognized during commitment complex formation before being bulged out of the U2 snRNA–pre-mRNA duplex. Mol. Cell. Biol. 17, 3469–3476 (1997).

    Article  CAS  Google Scholar 

  12. Wu, J. & Manley, J.L. Mammalian pre-mRNA branch site selection by U2 snRNP involves base-pairing. Genes Dev. 3, 1553–1561 (1989).

    Article  CAS  Google Scholar 

  13. Newby, M.I. & Greenbaum, N.L. A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch site architecture. RNA 7, 833–845 (2001).

    Article  CAS  Google Scholar 

  14. Zagorowska, I. & Adamiak, R.W. 2-Aminopurine labeled RNA bulge loops. Synthesis and thermodynamics. Biochimie 78, 123–130 (1996).

    Article  CAS  Google Scholar 

  15. Rachofsky, E.L., Osman, R. & Ross, J.B.A. Probing structure and dynamics of DNA with 2-aminopurine. Biochemistry 40, 946–956 (2001).

    Article  CAS  Google Scholar 

  16. Kulinski, T. et al. Introductory data on dynamics of RNA bulge duplexes. 2-aminopurine labeled adenosine loops. Collect. Czech. Chem. Commun. 61, S265–S267 (1996).

    Article  CAS  Google Scholar 

  17. Smith, J.S. & Nikonowicz, E.P. NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Biochemistry 37, 13486–13498.

  18. Jucker, F.M., Heus, H.A., Yip, P.F., Moors, E.H.M. & Pardi, A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968–980 (1996).

    Article  CAS  Google Scholar 

  19. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  Google Scholar 

  20. Borer, P.N. et al. Proton NMR and structural features of a 24-nucleotide RNA hairpin. Biochemistry 34, 6488–6503 (1995).

    Article  CAS  Google Scholar 

  21. Lynch, S.R. & Puglisi, J.D. Structure of a eukaryotic decoding region A-site RNA. J. Mol. Biol. 306, 1023–1035 (2001).

    Article  CAS  Google Scholar 

  22. Greenbaum, N.L., Radhakrishnan, I., Patel, D.J. & Hirsh, D. Solution structure of the donor site of a trans-splicing RNA. Structure 4, 725–733 (1996).

    Article  CAS  Google Scholar 

  23. Ennifar, E. et al. The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure 7, 1439–1449 (1999).

    Article  CAS  Google Scholar 

  24. Portman, S., Grimm, S., Workman, C., Usman, N. & Egli, M. Crystal structures of an A-form duplex with single-adenosine bulges and a conformational basis for site-specific RNA self-cleavage. Chem. Biol. 3, 173–184 (1996).

    Article  Google Scholar 

  25. Hermann, T. & Patel, D. RNA bulges as architectural and recognition motifs. Structure 8, R47–R54 (2000).

    Article  CAS  Google Scholar 

  26. Berglund, J.A., Rosbash, M. & Schultz, S.C. Crystal structure of a model branchpoint U2 snRNA duplex containing bulged adenosines. RNA 7, 682–691 (2001).

    Article  CAS  Google Scholar 

  27. Davis, D. & Poulter, C. 1H-15N NMR studies of Escherichia coli tRNAphe from hisT mutants: a structural role for pseudouridine. Biochemistry 30, 4223–4231 (1991).

    Article  CAS  Google Scholar 

  28. Yarian, C.S. et al. Structural and functional roles of the N1- and N3-protons of ψ at tRNA's position 39. Nucleic Acids Res. 27, 3543–3549 (1999).

    Article  CAS  Google Scholar 

  29. Newby, M.I. & Greenbaum, N.L. Investigation of Overhauser effects between pseudouridine and water protons in RNA helices. Proc. Natl. Acad. Sci. USA 99, 12697–12702 (2002).

    Article  CAS  Google Scholar 

  30. Hornig, H., Aebi, M. & Weissman, C. Effect of mutations at the lariat branch acceptor site on β-globin pre-messenger RNA splicing in vitro. Nature, 324, 589–591 (1986).

    Article  CAS  Google Scholar 

  31. Query, C., Strobel, S. & Sharp, P. Three recognition events at the branch site adenosine. EMBO J. 15, 1392–1402 (1996).

    Article  CAS  Google Scholar 

  32. Michel F., Hanna, M., Green, R., Bartel. D.P. & Szostak, J.W. The guanosine binding site of the Tetrahymena ribozyme. Nature 342, 391–395 (2002).

    Article  Google Scholar 

  33. Yarus, M., Illangesekare, M. & Christian, E. Selection of small molecules by the Tetrahymena catalytic center. J. Mol. Biol. 222, 995–1012 (1991).

    Article  CAS  Google Scholar 

  34. Kitamura, A. et al. Solution structure of an RNA fragment with the P7/P9.0 region and the 3′-terminal guanosine of the Tetrahymena group I intron. RNA 8, 440–451 (2002).

    Article  CAS  Google Scholar 

  35. Been, M.D., & Perrotta, A.T. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. Science 252, 434–437 (1991).

    Article  CAS  Google Scholar 

  36. Zhang, L. & Doudna, J.A. Structural insights into group II intron catalysis and branch site selection. Science 295, 2084–2087 (2002).

    Article  CAS  Google Scholar 

  37. Massenet, S. & Branlant, C. A limited number of pseudouridine residues in the human atac spliceosomal U snRNAs as compared to human major spliceosomal U snRNAs. RNA 5, 1495–1503 (1999).

    Article  CAS  Google Scholar 

  38. Wijmenga, S., Mooren, M. & Hilbers, C. in NMR of Macromolecules: A Practical Approach (ed. Roberts, G.C.K.) 207–288 (Oxford University Press, Oxford; 1993).

    Google Scholar 

  39. Hwang, T.-L., Mori, S., Shaka, A.J. & van Zijl, P.C.M. Application of phase-modulated CLEAN chemical EXchange spectroscopy (CELANEX-PM) to detect water-protein proton exchange and intermolecular NOEs. J. Am. Chem. Soc. 119, 6203–6204 (1997).

    Article  CAS  Google Scholar 

  40. Rice, L.M. & Brünger, A.T. Torsion angle dynamics — reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  41. Stein, E.G., Rice, L.M. & Brünger, A.T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164 (1997).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. X-PLOR Version 3.851: A System for Crystallography and NMR (Yale University Press, New Haven; 1996).

    Google Scholar 

  43. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. Mol. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  44. Huang, C.C., Pettersen, E.F., Klein, T.E., Ferrin, T.E. & Langridge, R. Conic: a fast renderer for space-filling molecules with shadows. J. Mol. Graph. 9, 230–236 (1991).

    Article  CAS  Google Scholar 

  45. Varani, G., Aboul-ela, F. & Allain, F.H.-T. NMR investigation of RNA structure. Prog. Nucl. Magn. Reson. Spec. 29, 51–127 (1996).

    Article  CAS  Google Scholar 

  46. Legault, P. & Pardi, A. 31P chemical shift as a probe of structural motifs in RNA. J. Magn. Reson. B 103, 82–86 (1994).

    Article  CAS  Google Scholar 

  47. Hall, K. & McLaughlin, L. Properties of U1/mRNA 5′ splice site duplex containing pseudouridine as measured by thermodynamic and NMR methods. Biochemistry 30, 1795–1801 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Hall for helpful discussions about ψ and 2AP, M. Zawrotny for computer support and the laboratory of D. Patel, in particular A. Gorin, for assistance with the initial structure calculation of ψBP. We also thank Y.-T. Yu for sharing new data with us before publication. We acknowledge the National High Magnetic Field Laboratory (Tallahassee, Florida) for NMR facilities and support. M.I.N. is a recipient of a Molecular Biophysics fellowship funded by National Science Foundation Research Training Grant. This work was supported by a National Institutes of Health Grant to N.L.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Greenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newby, M., Greenbaum, N. Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine. Nat Struct Mol Biol 9, 958–965 (2002). https://doi.org/10.1038/nsb873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing