Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proton radiation for localized prostate cancer

Abstract

Proton radiation is an emerging therapy for localized prostate cancer that is being sought with increasing frequency by patients. The physical properties of a proton beam make it ideal for clinical applications; the Bragg peak allows for deposition of dose at a well-defined depth with essentially no exit dose. Thus, high doses can be delivered to a target while largely sparing adjacent normal tissue. Proton radiation has proven effective in dose escalation for prostate cancer. This is important, as high-dose conformal radiation is now the standard form of external radiation for this disease. Intensity-modulated radiation therapy, which uses X-rays, is another means of delivering high radiation doses to the prostate and is currently the most widely used form of external radiation in the US. At present prices, it is probably more cost-effective than proton radiation; this could change. Clear dosimetric superiority of protons in the high-dose region has not yet been demonstrated. A dosimetric advantage may emerge as pencil-beam scanning replaces passive scanning, and intensity-modulated proton therapy becomes possible. This technique would be particularly well suited to partial prostate 'boosts', hypofractionation regimens and stereotactic delivery of radiation, all new approaches to prostate cancer that are being investigated.

Key Points

  • Proton beams deposit a large proportion of radiation dose within a short range, minimizing exposure of nontarget tissue

  • The earliest available means of dose escalation, proton radiation is now more costly than brachytherapy and intensity-modulated radiation therapy (IMRT)

  • The deep-pelvic location of the prostate, gland motion, and relatively large penumbra of proton beams at depth limit the potential of proton radiation in its current form

  • Technological advances are likely to increase the clinical utility of proton beam therapy, particularly in relation to hypofractionation, partial prostate boosting and in vivo dosimetry

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combining proton beams with differing energies results in the summation of narrow, monoenergetic Bragg peaks into a broader, more clinically useful 'spreadout' Bragg peak.
Figure 2: The use of a large number of beams during intensity-modulated radiation therapy means that low doses of radiation are delivered to a large volume of normal tissue.

Similar content being viewed by others

References

  1. Khan, F. M. The Physics of Radiation Therapy 2nd edn (Lippincott Williams & Wilkins, Philadelphia, 1984).

    Google Scholar 

  2. Gunderson, L. L. & Tepper, J. E. (Eds) Clinical Radiation Oncology 2nd edn (Elsevier Churchill Livingstone, Amsterdam, 2007).

    Google Scholar 

  3. Crook, J. et al. Postradiotherapy prostate biopsies: what do they really mean? Results for 498 patients. Int. J. Radiat. Oncol. Biol. Phys. 48, 355–367 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Crook, J. M., Perry, G. A., Robertson, S. & Esche, B. A. Routine prostate biopsies following radiotherapy for prostate cancer: results for 226 patients. Urology 45, 624–631 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Kuban, D. A., el-Mahdi, A. M. & Schellhammer, P. F. Effect of local tumor control on distant metastasis and survival in prostatic adenocarcinoma. Urology 30, 420–426 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Fuks, Z. et al. The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treated with 125I implantation. Int. J. Radiat. Oncol. Biol. Phys. 21, 537–547 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Zagars, G. K., von Eschenbach, A. C., Ayala, A. G., Schultheiss, T. E. & Sherman, N. E. The influence of local control on metastatic dissemination of prostate cancer treated by external beam megavoltage radiation therapy. Cancer 68, 2370–2377 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Coen, J. J., Zietman, A. L., Thakral, H. & Shipley, W. U. Radical radiation for localized prostate cancer: local persistence of disease results in a late wave of metastases. J. Clin. Oncol. 20, 3199–3205 (2002).

    Article  PubMed  Google Scholar 

  9. Shipley, W. U. et al. Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int. J. Radiat. Oncol. Biol. Phys. 32, 3–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Zelefsky, M. J. et al. Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 41, 491–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Kuban, D. A. et al. Long-term results of the MD Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 70, 67–74 (2008).

    Article  PubMed  Google Scholar 

  12. Peeters, S. T. et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J. Clin. Oncol. 24, 1990–1996 (2006).

    Article  PubMed  Google Scholar 

  13. Sathya, J. R. et al. Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J. Clin. Oncol. 23, 1192–1199 (2005).

    Article  PubMed  Google Scholar 

  14. Zietman, A. L. et al. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294, 1233–1239 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Dearnaley, D. P. et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol. 8, 475–487 (2007).

    Article  PubMed  Google Scholar 

  16. Dearnaley, D. P. et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353, 267–272 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ryu, J. K. et al. Interim report of toxicity from 3D conformal radiation therapy (3D-CRT) for prostate cancer on 3DOG/RTOG 9406, level III (79.2 Gy). Int. J. Radiat. Oncol. Biol. Phys. 54, 1036–1046 (2002).

    Article  PubMed  Google Scholar 

  18. Zelefsky, M. J. et al. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J. Urol. 166, 876–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zietman, A. L. et al. A prospective phase I/II study using proton beam radiation to deliver 82 GyE to men with localized prostate cancer: preliminary results of ACR 0312. Int. J. Radiat. Oncol. Biol. Phys. 72 (Suppl.), S77 (2008).

    Article  Google Scholar 

  20. Huang, E. H. et al. Late rectal toxicity: dose–volume effects of conformal radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 54, 1314–1321 (2002).

    Article  PubMed  Google Scholar 

  21. Cheung, M. R. et al. Investigation of bladder dose and volume factors influencing late urinary toxicity after external beam radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 67, 1059–1065 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lomax, A. J., Pedroni, E., Rutz, H. & Goitein, G. The clinical potential of intensity modulated proton therapy. Z. Med. Phys. 14, 147–152 (2004).

    Article  PubMed  Google Scholar 

  23. Trofimov, A. et al. Radiotherapy treatment of early-stage prostate cancer with IMRT and protons: a treatment planning comparison. Int. J. Radiat. Oncol. Biol. Phys. 69, 444–453 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hall, E. J. & Wuu, C. S. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 56, 83–88 (2003).

    Article  PubMed  Google Scholar 

  25. Miralbell, R., Lomax, A., Cella, L. & Schneider, U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. Biol. Phys. 54, 824–829 (2002).

    Article  PubMed  Google Scholar 

  26. Hall, E. J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 1–7 (2006).

    Article  PubMed  Google Scholar 

  27. Paganetti, H., Bortfeld, T. & Delaney, T. F. Neutron dose in proton radiation therapy: in regard to Eric J. Hall (Int J Radiat Oncol Biol Phys 2006; 65, 1–7). Int. J. Radiat. Oncol. Biol. Phys. 66, 1594–1595 (2006).

    Article  PubMed  Google Scholar 

  28. Mesoloras, G., Sandison, G. A., Stewart, R. D., Farr, J. B. & Hsi, W. C. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother. Med. Phys. 33, 2479–2490 (2006).

    Article  PubMed  Google Scholar 

  29. Wroe, A., Rosenfeld, A. & Schulte, R. Out-of-field dose equivalents delivered by proton therapy of prostate cancer. Med. Phys. 34, 3449–3456 (2007).

    Article  PubMed  Google Scholar 

  30. Liauw, S. L., Sylvester, J. E., Morris, C. G., Blasko, J. C. & Grimm, P. D. Second malignancies after prostate brachytherapy: incidence of bladder and colorectal cancers in patients with 15 years of potential follow-up. Int. J. Radiat. Oncol. Biol. Phys. 66, 669–673 (2006).

    Article  PubMed  Google Scholar 

  31. Kendal, W. S., Eapen, L., Macrae, R., Malone, S. & Nicholas, G. Prostatic irradiation is not associated with any measurable increase in the risk of subsequent rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 65, 661–668 (2006).

    Article  PubMed  Google Scholar 

  32. Konski, A., Speier, W., Hanlon, A., Beck, J. R. & Pollack, A. Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate? J. Clin. Oncol. 25, 3603–3608 (2007).

    Article  PubMed  Google Scholar 

  33. Brenner, D. J. & Hall, E. J. Fractionation and protraction for radiotherapy of prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 43, 1095–1101 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Fowler, J., Chappell, R. & Ritter, M. Is alpha/beta for prostate tumors really low? Int. J. Radiat. Oncol. Biol. Phys. 50, 1021–1031 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Yeoh, E. E. et al. Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 66, 1072–1083 (2006).

    Article  PubMed  Google Scholar 

  36. Lukka, H. et al. Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J. Clin. Oncol. 23, 6132–6138 (2005).

    Article  PubMed  Google Scholar 

  37. Madsen, B. L. et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int. J. Radiat. Oncol. Biol. Phys. 67, 1099–1105 (2007).

    Article  PubMed  Google Scholar 

  38. Mouraviev, V. et al. Prostate cancer laterality does not predict prostate-specific antigen recurrence after radical prostatectomy. Urology 70, 1141–1145 (2007).

    Article  PubMed  Google Scholar 

  39. Rajesh, A., Coakley, F. V. & Kurhanewicz, J. 3D MR spectroscopic imaging in the evaluation of prostate cancer. Clin. Radiol. 62, 921–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Nederveen, A. J., van der Heide, U. A., Hofman, P., Welleweerd, H. & Lagendijk, J. J. Partial boosting of prostate tumours. Radiother. Oncol. 61, 117–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Pickett, B., Vigneault, E., Kurhanewicz, J., Verhey, L. & Roach, M. Static field intensity modulation to treat a dominant intra-prostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 44, 921–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Bos, L. J. et al. Reduction of rectal dose by integration of the boost in the large-field treatment plan for prostate irradiation. Int. J. Radiat. Oncol. Biol. Phys. 52, 254–265 (2002).

    Article  PubMed  Google Scholar 

  43. Parodi, K. et al. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. Int. J. Radiat. Oncol. Biol. Phys. 68, 920–934 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Coen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coen, J., Zietman, A. Proton radiation for localized prostate cancer. Nat Rev Urol 6, 324–330 (2009). https://doi.org/10.1038/nrurol.2009.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing