Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals

Key Points

  • Lineage-specific expression of the CD8 genes is achieved through multiple lineage-specific enhancer elements that are located in the CD8 locus.

  • The lineage specificity of CD4 expression is mediated by a silencer that suppresses CD4 expression in the most immature thymocyte populations and during CD8+ T-cell differentiation. Although required to establish silencing in the thymus, the CD4 silencer is not required to maintain silencing in mature CD8+ T cells.

  • Two RUNX (Runt-related transcription factor)-family proteins bind to the CD4 silencer and are essential to its function: RUNX1 promotes CD4 repression in early thymocytes, whereas RUNX3 promotes CD4 silencing during CD8-lineage differentiation.

  • The induction of CD4 silencing seems to involve many components of the transcription apparatus, including sequence-specific transcription factors such as RUNX3 and chromatin-modifying enzymes.

  • RUNX proteins are important for other aspects of CD8+ T-cell differentiation but do not seem to be required for CD8-lineage choice.

  • The transcription factor GATA3 is required for CD4+ but not CD8+ Tcell differentiation; it is still unclear whether it is involved in CD4-lineage choice or at a later stage of CD4+ T-cell development.

  • The duration of T-cell receptor (TCR) signalling during T-cell development is a crucial determinant of lineage choice: persistent signals promote CD4-lineage choice,whereas transient signals promote CD8-lineage choice.

  • The duration of TCR signalling in thymocytes affects the expression of nuclear effectors of lineage differentiation, as persistent TCR signals are required for the upregulation of GATA3 expression but not for RUNX3 expression.

Abstract

During thymocyte development, immature thymocytes that express both CD4 and CD8 genes must choose either a helper CD4+ or cytotoxic CD8+ T-cell fate. Over the past two years, there have been some important advances regarding T-cell lineage choice, including the identification of transcription factors required for CD4 gene silencing by CD8-lineage cells (RUNX3) or for CD4+ T-cell differentiation (GATA3), and a better understanding of how T-cell receptor (TCR) signalling correlates CD4/CD8-lineage differentiation to MHC specificity. This review summarizes these recent advances and highlights potential links between TCR signals and nuclear effectors of lineage differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified model of intrathymic differentiation.
Figure 2: Cis-regulatory elements that control CD8 gene expression.
Figure 3: Cis-regulatory elements controlling CD4 gene expression.
Figure 4: Model for the establishment of silencing in CD8-lineage thymocytes.
Figure 5: Matching lineage differentiation to MHC specificity during positive selection.

Similar content being viewed by others

References

  1. Weiss, A. & Littman, D. R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Kearse, K. P., Roberts, J. L. & Singer, A. TCRα–CD3δε association is the initial step in αβ dimer formation in murine T cells and is limiting in immature CD4+CD8+ thymocytes. Immunity 2, 391–399 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Call, M. E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K. W. The organizing principle in the formation of the T cell receptor–CD3 complex. Cell 111, 967–979 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janeway, C. A. J. & Bottomly, K. Signals and signs for lymphocyte responses. Cell 76, 275–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Veillette, A., Zúñiga-Pflücker, J. C., Bolen, J. B. & Kruisbeek, A. M. Engagement of CD4 and CD8 expressed on immature thymocytes induces activation of intracellular tyrosine phosphorylation pathways. J. Exp. Med. 170, 1671–1680 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Shaw, A. S. et al. The lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. Cell 59, 627–636 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Bosselut, R. et al. Association of the adaptor molecule LAT with CD4 and CD8 coreceptors identifies a new coreceptor function in T cell receptor signal transduction. J. Exp. Med. 190, 1517–1526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brdickova, N. et al. LIME: a new membrane raft-associated adaptor protein involved in CD4 and CD8 coreceptor signaling. J. Exp. Med. 198, 1453–1462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hur, E. M. et al. LIME, a novel transmembrane adaptor protein, associates with p56lck and mediates T cell activation. J. Exp. Med. 198, 1463–1473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Egerton, M., Scollay, R. & Shortman, K. Kinetics of mature T-cell development in the thymus. Proc. Natl Acad. Sci. USA 87, 2579–2582 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huesmann, M., Scott, B., Kisielow, P. & von Boehmer, H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533–540 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Kisielow, P., Teh, H. S., Bluthmann, H. & von, B. H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Teh, H. S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Sha, W. C. et al. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 336, 73–76 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Alam, S. M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Janeway, C. A. T-cell development. Accessories or coreceptors? Nature 335, 208–210 (1988).

    Article  PubMed  Google Scholar 

  18. von Boehmer, H. Positive selection of lymphocytes. Cell 76, 219–228 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. von Boehmer, H. CD4/CD8 lineage commitment: back to instruction? J. Exp. Med. 183, 713–715 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Borgulya, P., Kishi, H., Muller, U., Kirberg, J. & von, B. H. Development of the CD4 and CD8 lineage of T cells: instruction versus selection. EMBO J. 10, 913–918 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robey, E. A. et al. Thymic selection in CD8 transgenic mice supports an instructive model for commitment to a CD4 or CD8 lineage. Cell 64, 99–107 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Itano, A., Kioussis, D. & Robey, E. Stochastic component to development of class I major histocompatibility complex-specific T cells. Proc. Natl Acad. Sci. USA 91, 220–224 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan, S. H., Cosgrove, D., Waltzinger, C., Benoist, C. & Mathis, D. Another view of the selective model of thymocyte selection. Cell 73, 225–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Davis, C. B., Killeen, N., Crooks, M. E., Raulet, D. & Littman, D. R. Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell 73, 237–247 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. van Meerwijk, J. P. & Germain, R. N. Development of mature CD8+ thymocytes: selection rather than instruction? Science 261, 911–915 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Chan, S. H., Waltzinger, C., Baron, A., Benoist, C. & Mathis, D. Role of coreceptors in positive selection and lineage commitment. EMBO J. 13, 4482–4489 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baron, A., Hafen, K. & von Boehmer, H. A human CD4 transgene rescues CD4CD8+ cells in β2-microglobulin-deficient mice. Eur. J. Immunol. 24, 1933–1936 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Lundberg, K., Heath, W., Kontgen, F., Carbone, F. R. & Shortman, K. Intermediate steps in positive selection: differentiation of CD4+CD8intTCRint thymocytes into CD4CD8+TCRhi thymocytes. J. Exp. Med. 181, 1643–1651 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki, H., Punt, J. A., Granger, L. G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Lucas, B. & Germain, R. N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+CD8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000). An in vitro study exploring the role of TCR-signal duration in lineage differentiation. The authors propose the initial formulation of the kinetic signalling model.

    Article  CAS  PubMed  Google Scholar 

  32. Bosselut, R., Guinter, T. I., Sharrow, S. O. & Singer, A. Unraveling a revealing paradox: why major histocompatibility complex I-signaled thymocytes 'paradoxically' appear as CD4+CD8lo transitional cells during positive selection of CD8+ T cells. J. Exp. Med. 197, 1709–1719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Germain, R. N. T-cell development and the CD4–CD8 lineage decision. Nature Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  Google Scholar 

  34. Bosselut, R. & Singer, A. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).

    Article  PubMed  Google Scholar 

  35. Hedrick, S. M. T cell development: bottoms-up. Immunity 16, 619–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Parnes, J. R. Molecular biology and function of CD4 and CD8. Adv. Immunol. 44, 265–311 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Kioussis, D. & Ellmeier, W. Chromatin and CD4, CD8A and CD8B gene expression during thymic differentiation. Nature Rev. Immunol. 2, 909–919 (2002).

    Article  CAS  Google Scholar 

  38. Hostert, A. et al. A region in the CD8 gene locus that directs expression to the mature CD8 T cell subset in transgenic mice. Immunity 7, 525–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Ellmeier, W., Sunshine, M. J., Losos, K., Hatam, F. & Littman, D. R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Hostert, A. et al. Hierarchical interactions of control elements determine CD8A gene expression in subsets of thymocytes and peripheral T cells. Immunity 9, 497–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Ellmeier, W., Sunshine, M. J., Losos, K. & Littman, D. R. Multiple developmental stage-specific enhancers regulate CD8 expression in developing thymocytes and in thymus-independent T cells. Immunity 9, 485–496 (1998). References 40 and 41 present a detailed dissection of the CD8 locus cis -regulatory elements that are active in DP thymocytes and mature T cells.

    Article  CAS  PubMed  Google Scholar 

  42. Ellmeier, W., Sunshine, M. J., Maschek, R. & Littman, D. R. Combined deletion of CD8 locus cis-regulatory elements affects initiation but not maintenance of CD8 expression. Immunity 16, 623–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Garefalaki, A. et al. Variegated expression of CD8α resulting from in situ deletion of regulatory sequences. Immunity 16, 635–647 (2002). Using homologous recombination techniques, references 42 and 43 demonstrate the role of two CD8 enhancers for CD8 gene expression, and indicate that these enhancers act, at least in part, to prevent chromatin modifications that would silence the CD8 locus.

    Article  CAS  PubMed  Google Scholar 

  44. Harker, N. et al. The CD8α gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ellmeier, W., Sawada, S. & Littman, D. R. The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu. Rev. Immunol. 17, 523–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Sawada, S. & Littman, D. R. Identification and characterization of a T-cell-specific enhancer adjacent to the murine CD4. Mol. Cell. Biol. 11, 5506–5515 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siu, G., Wurster, A. L., Duncan, D. D., Soliman, T. M. & Hedrick, S. M. A transcriptional silencer controls the developmental expression of the CD4. EMBO J. 13, 3570–3579 (1994). References 46 and 47 report the initial identification and characterization of the CD4 silencer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sawada, S., Scarborough, J. D., Killeen, N. & Littman, D. R. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Taniuchi, I., Sunshine, M. J., Festenstein, R. & Littman, D. R. Evidence for distinct CD4 silencer functions at different stages of thymocyte differentiation. Mol. Cell 10, 1083–1096 (2002). This study uses knocked-in point mutations to characterize functional regions within the CD4 silencer. It also dissects the 'repressor' from the 'silencing' function of the minimal silencer element.

    Article  CAS  PubMed  Google Scholar 

  50. Zou, Y. R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nature Genet. 29, 332–336 (2001). This paper shows that the CD4 silencer is required to establish silencing in CD8-lineage thymocytes but not to maintain silencing in mature CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  51. Duncan, D. D., Adlam, M. & Siu, G. Asymmetric redundancy in CD4 silencer function. Immunity 4, 301–311 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002). This study identifies the crucial role of RUNX1 and RUNX3 proteins in preventing inappropriate expression of CD4 by non-CD4-lineage T cells.

    Article  CAS  PubMed  Google Scholar 

  53. Kim, W. W. & Siu, G. Subclass-specific nuclear localization of a novel CD4 silencer binding factor. J. Exp. Med. 190, 281–291 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl Acad. Sci. USA 100, 7731–7736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ehlers, M. et al. Morpholino antisense oligonucleotide-mediated gene knockdown during thymocyte development reveals role for Runx3 transcription factor in CD4 silencing during development of CD4CD8+ thymocytes. J. Immunol. 171, 3594–3604 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Okuda, T., van, D. J., Hiebert, S. W., Grosveld, G. & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Geoffroy, V., Ducy, P. & Karsenty, G. A PEBP2 α/AML-1-related factor increases osteocalcin promoter activity through its binding to an osteoblast-specific cis-acting element. J. Biol. Chem. 270, 30973–30979 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, H. K. & Siu, G. The notch pathway intermediate HES-1 silences CD4 gene expression. Mol. Cell. Biol. 18, 7166–7175 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Radtke, F., Wilson, A., Mancini, S. J. & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nature Immunol. 5, 247–253 (2004).

    Article  CAS  Google Scholar 

  61. Allman, D., Punt, J. A., Izon, D. J., Aster, J. C. & Pear, W. S. An invitation to T and more: notch signaling in lymphopoiesis. Cell 109, Suppl. S1–S11 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Deftos, M. L., Huang, E., Ojala, E. W., Forbush, K. A. & Bevan, M. J. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13, 73–84 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fowlkes, B. J. & Robey, E. A. A reassessment of the effect of activated notch1 on CD4 and CD8 T cell development. J. Immunol. 169, 1817–1821 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Izon, D. J. et al. Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 14, 253–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Wolfer, A. et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8 T cell development. Nature Immunol. 2, 235–241 (2001).

    Article  CAS  Google Scholar 

  67. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Kaneta, M. et al. A role for pref-1 and HES-1 in thymocyte development. J. Immunol. 164, 256–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Smale, S. T. The establishment and maintenance of lymphocyte identity through gene silencing. Nature Immunol. 4, 607–615 (2003).

    Article  CAS  Google Scholar 

  73. Vaquero, A., Loyola, A. & Reinberg, D. The constantly changing face of chromatin. Sci. Aging Knowledge Environ. 2003, RE4 (2003).

    Article  PubMed  Google Scholar 

  74. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, W. et al. Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc. Natl Acad. Sci. USA 95, 492–498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Chi, T. H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002). This paper identifies the role of BAF chromatin-remodelling complexes in the control of CD4 and CD8 gene expression.

    Article  CAS  PubMed  Google Scholar 

  79. Chi, T. H. et al. Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19, 169–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo. Nature Immunol. 5, 280–288 (2004). Using a transgenic approach to dissect positive selection, this paper shows that the duration of intrathymic TCR signalling controls CD4/CD8-lineage choice.

    Article  CAS  Google Scholar 

  81. Eberharter, A. & Becker, P. B. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep. 3, 224–229 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wheeler, J. C. et al. Distinct in vivo requirements for establishment versus maintenance of transcriptional repression. Nature Genet. 32, 206–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Shen, X., Xiao, H., Ranallo, R., Wu, W. H. & Wu, C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Rando, O. J., Chi, T. H. & Crabtree, G. R. Second messenger control of chromatin remodeling. Nature Struct. Biol. 10, 81–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. June, C. H. et al. Inhibition of tyrosine phosphorylation prevents T-cell receptor-mediated signal transduction. Proc. Natl Acad. Sci. USA 87, 7722–7726 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Secrist, J. P., Karnitz, L. & Abraham, R. T. T-cell antigen receptor ligation induces tyrosine phosphorylation of phospholipase C-γ1. J. Biol. Chem. 266, 12135–12139 (1991).

    CAS  PubMed  Google Scholar 

  89. Wiest, D. L. et al. A spontaneously arising mutation in the DLAARN motif of murine ZAP-70 abrogates kinase activity and arrests thymocyte development. Immunity 6, 663–671 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Dillon, N. & Festenstein, R. Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet. 18, 252–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Festenstein, R. et al. Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner. Nature Genet. 23, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Hayashi, K. et al. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage. J. Immunol. 167, 4957–4965 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Weiss, M. J. & Orkin, S. H. GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol. 23, 99–107 (1995).

    CAS  PubMed  Google Scholar 

  94. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  95. Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl Acad. Sci. USA 101, 1993–1998 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hendriks, R. W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Hernandez-Hoyos, G., Anderson, M. K., Wang, C., Rothenberg, E. V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003). This study identifies the role of GATA3 in CD4-lineage differentiation using thymic reaggregation cultures.

    Article  CAS  PubMed  Google Scholar 

  98. Nawijn, M. C. et al. Enforced expression of GATA-3 in transgenic mice inhibits TH1 differentiation and induces the formation of a T1/ST2-expressing TH2-committed T cell compartment in vivo. J. Immunol. 167, 724–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Jenkinson, E. J., Anderson, G. & Owen, J. J. Studies on T cell maturation on defined thymic stromal cell populations in vitro. J. Exp. Med. 176, 845–853 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Nawijn, M. C. et al. Enforced expression of GATA-3 during T cell development inhibits maturation of CD8 single-positive cells and induces thymic lymphoma in transgenic mice. J. Immunol. 167, 715–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Pai, S. Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003). This study uses conditional gene disruption to target GATA3 deletion to DP thymocytes, thereby bypassing blocks resulting from the lack of GATA3 at earlier developmental stages. The result shows that GATA3 is required for CD4+ T-cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  102. Hogquist, K. A. Signal strength in thymic selection and lineage commitment. Curr. Opin. Immunol. 13, 225–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Barber, E. K., Dasgupta, J. D., Schlossman, S. F., Trevillyan, J. M. & Rudd, C. E. The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proc. Natl Acad. Sci. USA 86, 3277–3281 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    Article  CAS  PubMed  Google Scholar 

  105. Anderson, S. J., Levin, S. D. & Perlmutter, R. M. Involvement of the protein tyrosine kinase p56lck in T cell signaling and thymocyte development. Adv. Immunol. 56, 151–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Wiest, D. L. et al. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 178, 1701–1712 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Seong, R. H., Chamberlain, J. W. & Parnes, J. R. Signal for T-cell differentiation to a CD4 cell lineage is delivered by CD4 transmembrane region and/or cytoplasmic tail. Nature 356, 718–720 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Itano, A. et al. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J. Exp. Med. 183, 731–741 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Matechak, E. O., Killeen, N., Hedrick, S. M. & Fowlkes, B. J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 4, 337–347 (1996). References 108 and 109 report the observations that gave rise to the strength-of-signal hypothesis.

    Article  CAS  PubMed  Google Scholar 

  110. Tyznik, A. J., Sun, J. C. & Bevan, M. J. The CD8 population in CD4-deficient mice is heavily contaminated with MHC class II-restricted T cells. J. Exp. Med. 199, 559–565 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hernandez-Hoyos, G., Sohn, S. J., Rothenberg, E. V. & Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 12, 313–322 (2000). This paper documents that interfering with LCK activity redirects thymocytes into the 'wrong' lineage: transgenic LCK molecules with constitutive or disrupted catalytic activity promote CD4− or CD8−lineage differentiation, respectively.

    Article  CAS  PubMed  Google Scholar 

  112. Bommhardt, U., Cole, M. S., Tso, J. Y. & Zamoyska, R. Signals through CD8 or CD4 can induce commitment to the CD4 lineage in the thymus. Eur. J. Immunol. 27, 1152–1163 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Sharp, L. L., Schwarz, D. A., Bott, C. M., Marshall, C. J. & Hedrick, S. M. The influence of the MAPK pathway on T cell lineage commitment. Immunity 7, 609–618 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Watanabe, N., Arase, H., Onodera, M., Ohashi, P. S. & Saito, T. The quantity of TCR signal determines positive selection and lineage commitment of T cells. J. Immunol. 165, 6252–6261 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Shores, E. W. et al. Role of TCR ζ chain in T cell development and selection. Science 266, 1047–1050 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Fischer, K. D. et al. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 374, 474–477 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374, 470–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Hashimoto, K. et al. Requirement for p56lck tyrosine kinase activation in T cell receptor-mediated thymic selection. J. Exp. Med. 184, 931–943 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity 7, 451–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk1) knockout mice. Science 286, 1374–1377 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Bosselut, R., Feigenbaum, L., Sharrow, S. O. & Singer, A. Strength of signaling by CD4 and CD8 coreceptor tails determines the number but not the lineage direction of positively selected thymocytes. Immunity 14, 483–494 (2001). This paper compared the efficiency of the CD4 and CD8 cytoplasmic tails in promoting CD4- and CD8-lineage differentiation. The results indicate that, when fused to the CD8 molecule, the CD4 tail promotes equally the differentiation of MHC class-I-restricted thymocytes into CD4- and CD8-lineage T cells.

    Article  CAS  PubMed  Google Scholar 

  123. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R. N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000). An in vitro study using an original two-step culture system to propose a role for TCR-signal duration in lineage differentiation. Unlike the kinetic signalling model, lineage choice in this system seems to occur before any change in co-receptor gene expression.

    Article  CAS  PubMed  Google Scholar 

  124. Chan, A. C. et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264, 1599–1601 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Elder, M. E. et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264, 1596–1599 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, X. et al. Restricting Zap70 expression to CD4+CD8+ thymocytes reveals a T cell receptor-dependent proofreading mechanism controlling the completion of positive selection. J. Exp. Med. 197, 363–373 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sebzda, E., Choi, M., Fung-Leung, W. P., Mak, T. W. & Ohashi, P. S. Peptide-induced positive selection of TCR transgenic thymocytes in a coreceptor-independent manner. Immunity 6, 643–653 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Bhandoola, A., Kithiganahalli, B., Granger, L. & Singer, A. Programming for cytotoxic effector function occurs concomitantly with CD4 extinction during CD8+ T cell differentiation in the thymus. Int. Immunol. 12, 1035–1040 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 14, 207–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Goldrath, A. W., Hogquist, K. A. & Bevan, M. J. CD8 lineage commitment in the absence of CD8. Immunity 6, 633–642 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 394, 901–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Sohn, S. J., Forbush, K. A., Pan, X. C. & Perlmutter, R. M. Activated p56lck directs maturation of both CD4 and CD8 single-positive thymocytes. J. Immunol. 166, 2209–2217 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Shimoda, K. et al. Lack of IL-4-induced TH2 response and IgE class switching in mice with disrupted Stat6. Nature 380, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent TH2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Das, J. et al. A critical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nature Immunol. 2, 45–50 (2001).

    Article  CAS  Google Scholar 

  138. Canelles, M., Park, M. L., Schwartz, O. M. & Fowlkes, B. J. The influence of the thymic environment on the CD4-versus-CD8 T lineage decision. Nature Immunol. 4, 756–764 (2003).

    Article  CAS  Google Scholar 

  139. Aliahmad, P. et al. TOX provides a link between calcineurin activation and CD8 lineage commitment. J. Exp. Med. 199, 1089–1099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Komine, O. et al. The Runx1 transcription factor inhibits the differentiation of naive CD4+ T cells into the TH2 lineage by repressing GATA3 expression. J. Exp. Med. 198, 51–61 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D. J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Speck, N. A. & Gilliland, D. G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev. Cancer 2, 502–513 (2002).

    Article  CAS  Google Scholar 

  143. Wheeler, J. C., Shigesada, K., Gergen, J. P. & Ito, Y. Mechanisms of transcriptional regulation by Runt domain proteins. Semin. Cell. Dev. Biol. 11, 369–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Javed, A. et al. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBFα/AML/PEBP2α) dependent activation of tissue-specific gene transcription. J. Cell Sci. 113, 2221–2231 (2000).

    CAS  PubMed  Google Scholar 

  145. Wurster, A. L., Siu, G., Leiden, J. M. & Hedrick, S. M. Elf-1 binds to a critical element in a second CD4 enhancer. Mol. Cell. Biol. 14, 6452–6463 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Salmon, P., Boyer, O., Lores, P., Jami, J. & Klatzmann, D. Characterization of an intronless CD4 minigene expressed in mature CD4 and CD8 T cells, but not expressed in immature thymocytes. J. Immunol. 156, 1873–1879 (1996).

    CAS  PubMed  Google Scholar 

  147. Uematsu, Y., Donda, A. & De, L. G. Thymocytes control the CD4 gene differently from mature T lymphocytes. Int. Immunol. 9, 179–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Adlam, M. & Siu, G. Hierarchical interactions control CD4 gene expression during thymocyte development. Immunity 18, 173–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Donda, A., Schulz, M., Burki, K., De, L. G. & Uematsu, Y. Identification and characterization of a human CD4 silencer. Eur. J. Immunol. 26, 493–500 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Allen, R. D., Kim, H. K., Sarafova, S. D. & Siu, G. Negative regulation of CD4 gene expression by a HES-1-c-Myb complex. Mol. Cell. Biol. 21, 3071–3082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bhandoola, A. et al. Positive selection as a developmental progression initiated by αβ TCR signals that fix TCR specificity prior to lineage commitment. Immunity 10, 301–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Swat, W., Dessing, M., von, B. H. & Kisielow, P. CD69 expression during selection and maturation of CD4+CD8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Yu, Q., Erman, B., Bhandoola, A., Sharrow, S. O. & Singer, A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J. Exp. Med. 197, 475–487 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Leung, R. K. et al. Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nature Immunol. 2, 1167–1173 (2001).

    Article  CAS  Google Scholar 

  155. Tanigaki, K. et al. Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to colleagues whose work could not be mentioned or cited because of space limitations. I am grateful to A. Singer and A. Bhandoola for continued and invaluable exchange of ideas about issues discussed in this review. I thank W. Ellmeier, X. Liu and S. Sarafova for helpful discussions, and J. Ashwell, A. Bhandoola, A. Gégonne and A. Singer for critical reading of the manuscript. Work in my laboratory is funded by the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Gene

CD4

CD8

GATA3

HES1

HP1

LCK

MYB

Notch-1

Notch-2

RUNX1

RUNX2

RUNX3

STAT6

TOX

ZAP70

Glossary

POSITIVE SELECTION

A process in the thymus that selects thymocytes expressing T-cell receptors (TCRs) that are of intermediate avidity for self-peptide–MHC complexes. TCR signals generated by this weak interaction cause thymocyte survival and differentiation into mature T cells, the TCRs of which can recognize foreign peptides bound to self-MHC molecules. Positive selection establishes the MHC-restricted T-cell repertoire.

CIS-REGULATORY ELEMENTS

DNA sequences located within or next to transcribed genes and that either increase (enhancers) or decrease (repressor or silencer, depending on their mechanism of action) gene transcription. Cis-regulatory elements act by recruiting trans-acting transcriptional activator or repressor proteins.

ENHANCERS

Control elements within DNA to which regulatory proteins bind, thereby influencing the rate of gene transcription; enhancers function in an orientation- and position-independent manner (that is, they can act either upstream or downstream of or in an intron).

VARIEGATED

A phenomenon characterized by the expression of a gene by only a fraction of the cells, apparently randomly chosen, in a population of cells that are otherwise of the same developmental and functional status. Variegation is thought to reflect 'all-or-nothing' changes in chromatin organization.

KNOCKED-IN MUTATIONS

Mutations introduced into a gene locus using homologous recombination techniques. Unlike knockout mutations, which use large deletions or insertions to eliminate the function of the target gene, knock-in mutations are intended to change the function of the target locus, generally through point mutation.

HEMIZYGOUS

A genotype characterized by the presence of a wild-type and a non-functional allele.

THYMIC ORGAN CULTURES

A technique allowing the culture of thymic lobes taken from fetal or neonatal mice. Thymic organ culture does not disrupt thymocyte–stromal-cell interactions and allows manipulation of the extracellular milieu in which thymocytes develop, thereby combining advantages of in vivo and in vitro approaches.

CHROMATIN-REMODELLING COMPLEXES

ATP-dependent multi-protein complexes that mediate the repositioning or reorganization of nucleosomes over a single- or multi-gene locus, resulting in either increased or reduced gene transcription.

CHROMATIN IMMUNOPRECIPITATION ASSAYS

A technique allowing the detection of in vivo interactions between a DNA-associated protein and candidate DNA target sequences. It involves the fragmentation of genomic DNA chromatin after chemical crosslinking of proteins to DNA, the immunoprecipitation of protein–DNA complexes using an antibody against the protein of interest, followed by PCR amplification of candidate DNA sequences after reversal of the crosslink.

EPIGENETIC

Any heritable influence (in the progeny of cells or of individuals) on chromosome or gene function that is not accompanied by a change in DNA sequence. Examples of epigenetic events include mammalian X-chromosome inactivation, imprinting, centromere inactivation and position-effect variegation.

RNA INTERFERENCE

A technique to inhibit (or 'knock-down') the expression of a specific target gene using short oligonucleotides that are complementary to the sequence of the gene mRNA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosselut, R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat Rev Immunol 4, 529–540 (2004). https://doi.org/10.1038/nri1392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing