Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation

Key Points

  • The liver and pancreas both arise from a multipotent population of endoderm cells and share many characteristics of their early development, including the expression of common regulatory transcription factors.

  • There are different natural mechanisms for generating the liver and pancreas, as can be observed — each tissue originates from multiple spatial domains of endoderm cells and is under the influence of different genes and inductive cues. The diversity of natural mechanisms for generating liver and pancreas progenitors is anticipated to enable flexibility in programming liver and pancreas cells (for example, hepatocytes and insulin cells) from other progenitor and stem-cell types.

  • During regenerative responses to tissue damage, rare progenitor cells emerge in the liver and pancreas and help to repopulate the tissue. However, we lack the means to prospectively identify such progenitors and follow their activation and development. But in certain animal models, mutations of transcription-factor genes lead to reproducible fate changes that can be monitored prospectively, providing the opportunity to study fundamental mechanisms of fate determination and cellular plasticity.

  • Gene regulatory networks appear to be simple and involve fewer feedback loops early in liver development, compared with later in development. It is thought that the more complex networks that involve feedback regulation by transcription factors could account for the more stable phenotype of mature cells.

  • Genetic studies using mouse embryo chimeras and conditional cell ablation have shown that the remarkable regenerative capacity of the liver is established at the earliest stages of hepatoblast development, and that the more limited regenerative capacity of the pancreatic endocrine cells is also established at the earliest stages of pancreas development. Understanding how these differences are manifested so early might provide powerful clues about how to control regenerative capacity.

  • Although, in the past, mammalian systems have provided the most information about the basis for liver and pancreas development, the genetic and molecular facility of model organisms such as zebrafish, Xenopus leavis and the chick are beginning to outpace embryonic studies of mammalian liver and pancreas development. This is exemplified by the extensive and detailed role of Wnt signalling in liver specification as revealed by forward genetic screens for liver defects in zebrafish and by the ability to readily inactivate genes by RNA inerference in X. leavis embryos.

Abstract

The liver and pancreas arise from a common multipotent population of endoderm cells and share many aspects of their early development. Yet each tissue originates from multiple spatial domains of the endoderm, under the influence of different genes and inductive cues, and obtains different regenerative capacities. Emerging genetic evidence is illuminating the ability of newly specified hepatic and pancreatic progenitors to reverse their course and develop into gut progenitors. Understanding how tissue programming can be reversed and how intrinsic regenerative capacities are determined should facilitate the discovery of the basis of cellular plasticity and aid in the targeted programming and growth of stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental origins of the liver and pancreas.
Figure 2: Gene regulatory networks for specifying ventral and dorsal pancreas progenitors.
Figure 3: Liver induction differences between model organisms.
Figure 4: Developmental plasticity in the liver and pancreas lineages.

Similar content being viewed by others

References

  1. Jensen, J. Gene regulatory factors in pancreatic development. Dev. Dyn. 229, 176–200 (2004).

    CAS  PubMed  Google Scholar 

  2. Kim, S. K. & MacDonald, R. J. Signaling and transcriptional control of pancreatic organogenesis. Curr. Opin. Genet. Dev. 12, 540–547 (2002).

    CAS  PubMed  Google Scholar 

  3. Murtaugh, L. C. Pancreas and beta-cell development: from the actual to the possible. Development 134, 427–438 (2007).

    CAS  PubMed  Google Scholar 

  4. Wilson, M. E., Scheel, D. & German, M. S. Gene expression cascades in pancreatic development. Mech. Dev. 120, 65–80 (2003).

    CAS  PubMed  Google Scholar 

  5. Zaret, K. S. Regulatory phases of early liver development: paradigms of organogenesis. Nature Rev. Genet. 3, 499–512 (2002).

    CAS  PubMed  Google Scholar 

  6. Zhao, R. & Duncan, S. A. Embryonic development of the liver. Hepatology 41, 956–967 (2005).

    CAS  PubMed  Google Scholar 

  7. Polyak, K. & Hahn, W. C. Roots and stems: stem cells in cancer. Nature Med. 12, 296–300 (2006).

    CAS  PubMed  Google Scholar 

  8. Bort, R., Signore, M., Tremblay, K., Barbera, J. P. & Zaret, K. S. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44–56 (2006). This paper shows that the Hex transcription factor controls the cell morphogenetic changes that enable tissue-bud emergence. In the absence of Hex and such morphogenetic changes, newly specified hepatoblasts seem to reverse their course and differentiate into gut cells. Chimeric embryo studies in this paper show that the nascent liver bud possesses remarkable regenerative properties, which had previously been seen in the adult liver.

    CAS  PubMed  Google Scholar 

  9. Gualdi, R. et al. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 10, 1670–1682 (1996).

    CAS  PubMed  Google Scholar 

  10. Jung, J., Zheng, M., Goldfarb, M. & Zaret, K. S. Initiation of mammalian liver development from endoderm by fibroblasts growth factors. Science 284, 1998–2003 (1999).

    CAS  PubMed  Google Scholar 

  11. Clotman, F. et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 19, 1849–1854 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Germain, L., Blouin, M. J. & Marceau, N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, a-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 48, 4909–4918 (1988).

    CAS  PubMed  Google Scholar 

  13. Shiojiri, N. Analysis of differentiation of hepatocytes and bile duct cells in developing mouse liver by albumin immunofluorescence. Dev. Growth Differ. 26, 555–561 (1984).

    Google Scholar 

  14. Gannon, M. & Wright, C. V. E. in Cell Lineage and Fate Determination. (ed. Moody, S. A.) 583–615 (Academic, London, 1999).

    Google Scholar 

  15. Gu, G., Dubauskaite, J. & Melton, D. A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  16. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    CAS  PubMed  Google Scholar 

  17. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  18. Fujitani, Y. et al. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev. 20, 253–266 (2006). This careful and elegant genetic study shows that different upstream cis sequences control the levels of the Pdx1 gene in different tissues, and that subtle changes in the levels of expression of Pdx1 give rise to dramatic morphological embryonic phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    CAS  PubMed  Google Scholar 

  20. Fujikura, J. et al. Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas. Cell. Metab. 3, 59–65 (2006).

    CAS  PubMed  Google Scholar 

  21. Hald, J. et al. Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development. Dev. Biol. 260, 426–437 (2003).

    CAS  PubMed  Google Scholar 

  22. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nature Genet. 24, 36–44 (2000).

    CAS  PubMed  Google Scholar 

  23. Murtaugh, L. C., Stanger, B. Z., Kwan, K. M. & Melton, D. A. Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl Acad. Sci. USA 100, 14920–14925 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Slack, J. M. W. Developmental biology of the pancreas. Development 121, 1569–1580 (1995).

    CAS  PubMed  Google Scholar 

  25. Harrison, K. A., Thaler, J., Pfaff, S. L., Gu, H. & Kehrl, J. H. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nature Genet. 23, 71–75 (1999).

    CAS  PubMed  Google Scholar 

  26. Li, H., Arber, S., Jessell, T. M. & Edlund, H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nature Genet. 23, 67–70 (1999).

    CAS  PubMed  Google Scholar 

  27. Haumaitre, C. et al. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc. Natl Acad. Sci. USA 102, 1490–1495 (2005). This paper provides a careful, comparative analysis of the effect of Hnf1b mutation on the expression of other transcription factors involved in early pancreatic development, thus unveiling part of the relevant regulatory network.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA 97, 1607–1611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawaguchi, Y. et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature Genet. 32, 128–134 (2002).

    CAS  PubMed  Google Scholar 

  30. Krapp, A. et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12, 3752–3763 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Watt, A. J., Zhao, R., Li, J. & Duncan, S. A. Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev. Biol. 7, 37 (2007). The authors generated tetraploid chimeric embryos that were embryonic null for Gata4 , to bypass the requirement for Gata4 in extra-embryonic tissues. The results showed that Gata4 is necessary for liver-bud development, possibly in a cell non-autonomous fashion, as well as for the development of the ventral pancreatic bud, but not for the dorsal pancreatic bud.

    PubMed  PubMed Central  Google Scholar 

  32. Jacquemin, P. et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell Biol. 20, 4445–4454 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jacquemin, P., Lemaigre, F. P. & Rousseau, G. G. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev. Biol. 258, 105–116 (2003).

    CAS  PubMed  Google Scholar 

  34. Tremblay, K. D. & Zaret, K. S. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev. Biol. 280, 87–99 (2005). The authors of this paper dye-labelled different patches of embryonic endoderm cells in vivo , cultured the embryos, and monitored the appearance of labelled cells in different tissue buds. In this way, they created a fate map depicting where different tissue progenitors occur in the undifferentiated foregut endoderm.

    CAS  PubMed  Google Scholar 

  35. Dan, Y. Y. et al. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc. Natl Acad. Sci. USA 103, 9912–9917 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lazaro, C. A., Rhim, J. A., Yamada, Y. & Fausto, N. Generation of hepatocytes from oval cell precursors in culture. Cancer Res. 58, 5514–5522 (1998).

    CAS  PubMed  Google Scholar 

  37. Rogler, L. E. Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am. J. Pathol. 150, 591–602 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Spagnoli, F. M., Amicone, L., Tripodi, M. & Weiss, M. C. Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-Met in the liver. J. Cell Biol. 143, 1101–1112 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Suzuki, A. et al. Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J. Cell Biol. 156, 173–184 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanimizu, N., Nishikawa, M., Saito, H., Tsujimura, T. & Miyajima, A. Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J. Cell Sci. 116, 1775–1786 (2003).

    CAS  PubMed  Google Scholar 

  41. Chen, Y. et al. Cell-autonomous and signal-dependent expression of liver and intestine marker genes in pluripotent precursor cells from Xenopus embryos. Mech. Dev. 120, 277–288 (2003).

    CAS  PubMed  Google Scholar 

  42. Rossi, J. M., Dunn, N. R., Hogan, B. L. M. & Zaret, K. S. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 15, 1998–2009 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Serls, A. E., Doherty, S., Parvatiyar, P., Wells, J. M. & Deutsch, G. H. Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132, 35–47 (2005). The authors of this paper discovered that simply treating foregut endoderm explants with different concentrations of FGF could induce pancreas, liver or lung progenitors. The results correlated with different levels of endogenous FGF signalling in embryos in the spatial context of the emergence of each tissue.

    CAS  PubMed  Google Scholar 

  44. Shin, D. et al. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134, 2041–2050 (2007).

    CAS  PubMed  Google Scholar 

  45. Zhang, W., Yatskievych, T. A., Baker, R. K. & Antin, P. B. Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling. Dev. Biol. 268, 312–326 (2004). This extensive paper investigates the respective roles of BMP and FGF signalling in avian liver induction and reveals commonalities and differences with what had been reported in the mouse. By connecting such signalling to Hex induction, these signals help establish a network by which endoderm cells respond to hepatogenic signals.

    CAS  PubMed  Google Scholar 

  46. Calmont, A. et al. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev. Cell 11, 339–348 (2006). The authors examined MAPK and PI3K signalling-pathway activation in foregut endoderm cells in the hours preceding and culminating in liver induction. Genetic and pharmacologic inhibitors showed that the MAPK pathway, but not the PI3K pathway, is downstream of FGF hepatogenic signalling.

    CAS  PubMed  Google Scholar 

  47. Gouon-Evans, V. et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nature Biotechnol. 24, 1402–1411 (2006). This paper is a culmination of years of careful development of an ES-cell differentiation culture system by the Keller laboratory, which uses the principles of tissue induction in embryology. The authors used a mouse ES-cell line that was genetically engineered to report activation of the endoderm lineage, and used the system to optimize the recovery of endoderm cells that were suitable for subsequent hepatic differentiation.

    CAS  Google Scholar 

  48. Teratani, T. et al. Direct hepatic fate specification from mouse embryonic stem cells. Hepatology 41, 836–846 (2005).

    CAS  PubMed  Google Scholar 

  49. Martinez-Barbera, J. P. et al. The homeobox gene hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 (2000).

    CAS  PubMed  Google Scholar 

  50. Thomas, P. Q., Brown, A. & Beddington, R. S. P. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85–94 (1998).

    CAS  PubMed  Google Scholar 

  51. Bort, R., Martinez-Barbera, J. P., Beddington, R. S. & Zaret, K. S. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 131, 797–806 (2004).

    CAS  PubMed  Google Scholar 

  52. Hunter, M. P. et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev. Biol. 308, 355–367 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    CAS  PubMed  Google Scholar 

  54. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    CAS  PubMed  Google Scholar 

  56. Zeggini, E. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. D'Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnol. 24, 1392–1401 (2006). The authors of this paper developed a six-stage differentiation protocol that mimics the inductive signals of normal pancreatic endocrine development for human ES cells. In the end, they obtained cells that express insulin in response to various agonists, but not in response to glucose. Nonetheless, the differentiation protocol sets a paradigm in the field.

    CAS  Google Scholar 

  58. Jiang, J. et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25, 1940–1953 (2007).

    CAS  PubMed  Google Scholar 

  59. Ogawa, S. et al. Crucial roles of mesodermal cell lineages in a murine embryonic stem cell-derived in vitro liver organogenesis system. Stem Cells 23, 903–913 (2005).

    CAS  PubMed  Google Scholar 

  60. Cai, J. et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 45, 1229–1239 (2007).

    CAS  PubMed  Google Scholar 

  61. Edsbagge, J. et al. Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme. Development 132, 1085–1092 (2005). These authors made the unexpected discovery that cardiac N-cadherin expression could restore a pancreatic developmental defect in an N-cadherin-null mouse model. Further studies revealed a role for sphingosine-1-phosphate: when it is secreted into the bloodstream it promotes early pancreatic development.

    CAS  PubMed  Google Scholar 

  62. Jacquemin, P. et al. An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev. Biol. 290, 189–199 (2006).

    CAS  PubMed  Google Scholar 

  63. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    CAS  PubMed  Google Scholar 

  64. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    CAS  PubMed  Google Scholar 

  65. Yoshitomi, H. & Zaret, K. S. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131, 807–817 (2004).

    CAS  PubMed  Google Scholar 

  66. Marletaz, F., Holland, L. Z., Laudet, V. & Schubert, M. Retinoic acid signaling and the evolution of chordates. Int. J. Biol. Sci. 2, 38–47 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Stafford, D. & Prince, V. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol. 12, 1215 (2002).

    CAS  PubMed  Google Scholar 

  68. Stafford, D. et al. Retinoids signal directly to zebrafish endoderm to specify insulin-expressing beta-cells. Development 133, 949–956 (2006). This paper describes an elegant study in zebrafish that makes use of genetics and chimeric embryos to demonstrate that the endoderm intrinsically responds to RA signalling to promote endocrine differentiation.

    CAS  PubMed  Google Scholar 

  69. Chen, Y. et al. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev. Biol. 271, 144–160 (2004).

    CAS  PubMed  Google Scholar 

  70. Hebrok, M. Hedgehog signaling in pancreas development. Mech. Dev. 120, 45–57 (2003).

    CAS  PubMed  Google Scholar 

  71. Pan, F. C., Chen, Y., Bayha, E. & Pieler, T. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms. Mech. Dev. 124, 518–531 (2007). This paper describes an extensive and detailed study of RA signalling, including an analysis of receptor expression patterns.

    CAS  PubMed  Google Scholar 

  72. Martin, M. et al. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev. Biol. 284, 399–411 (2005).

    CAS  PubMed  Google Scholar 

  73. Molotkov, A., Molotkova, N. & Duester, G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev. Dyn. 232, 950–957 (2005).

    CAS  PubMed  Google Scholar 

  74. Ober, E. A., Verkade, H., Field, H. A. & Stainier, D. Y. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688–691 (2006). The authors used a forward genetic screen in zebrafish to identify genes that are important for liver development, and found that a Wnt gene is necessary for liver-bud differentiation and growth. This paper beautifully brings together genetics with molecular analysis in the characterization of Wnt signalling in early organogenesis.

    CAS  PubMed  Google Scholar 

  75. Suksaweang, S. et al. Morphogenesis of chicken liver: identification of localized growth zones and the role of beta-catenin/Wnt in size regulation. Dev. Biol. 266, 109–122 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Monga, S. P. et al. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 124, 202–216 (2003).

    CAS  PubMed  Google Scholar 

  77. Monga, S. P., Pediaditakis, P., Mule, K., Stolz, D. B. & Michalopoulos, G. K. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33, 1098–1109 (2001).

    CAS  PubMed  Google Scholar 

  78. Finley, K. R., Tennessen, J. & Shawlot, W. The mouse secreted frizzled-related protein 5 gene is expressed in the anterior visceral endoderm and foregut endoderm during early post-implantation development. Gene Expr. Patterns 3, 681–684 (2003).

    CAS  PubMed  Google Scholar 

  79. Pilcher, K. E. & Krieg, P. A. Expression of the Wnt inhibitor, sFRP5, in the gut endoderm of Xenopus. Gene Expr. Patterns 2, 369–372 (2002).

    CAS  PubMed  Google Scholar 

  80. McLin, V. A., Rankin, S. A. & Zorn, A. M. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 134, 2207–2217 (2007). This paper is a superb and extensive study showing that suppression of Wnt signalling is needed for the earliest events in liver and pancreas induction, along with the discovery of a connected transcription factor network involving Hex and Vent2, both homeodomain proteins.

    CAS  PubMed  Google Scholar 

  81. Bossard, P. & Zaret, K. S. Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel's Diverticulum. Development 127, 4915–4923 (2000).

    CAS  PubMed  Google Scholar 

  82. Wallace, K. N., Yusuff, S., Sonntag, J. M., Chin, A. J. & Pack, M. Zebrafish hhex regulates liver development and digestive organ chirality. Genesis 30, 141–143 (2001).

    CAS  PubMed  Google Scholar 

  83. Ueno, S. et al. Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 9685–9690 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006). This paper presents a fascinating revelation about the extreme conservation of the regulatory network that specifies endoderm, and argues about how it has been so conserved, as well as elaborated upon, to generate different tissues.

    CAS  PubMed  Google Scholar 

  85. Zaret, K. Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Devel. Biol. 209, 1–10 (1999).

    CAS  Google Scholar 

  86. Ang, S. L. et al. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119, 1301–1315 (1993).

    CAS  PubMed  Google Scholar 

  87. Molkentin, J. D. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 275, 38949–38952 (2000).

    CAS  PubMed  Google Scholar 

  88. Monaghan, A. P., Kaestner, K. H., Grau, E. & Schütz, G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3a, b, and g genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119, 567–578 (1993).

    CAS  PubMed  Google Scholar 

  89. Sasaki, H. & Hogan, B. L. M. Differential expression of multiple fork head related genes during gastrulation and pattern formation in the mouse embryo. Development 118, 47–59 (1993).

    CAS  PubMed  Google Scholar 

  90. Ang, S.-L. & Rossant, J. HNF-3b is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    CAS  PubMed  Google Scholar 

  91. Weinstein, D. C. et al. The winged-helix transcription factor HNF-3b is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994).

    CAS  PubMed  Google Scholar 

  92. Chen, W. S. et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev. 8, 2466–2477 (1994).

    CAS  PubMed  Google Scholar 

  93. Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R. & Grosveld, F. The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723–732 (1999).

    CAS  PubMed  Google Scholar 

  94. Morrisey, E. E. et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 12, 3579–3590 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, C. S., Sund, N. J., Behr, R., Herrera, P. L. & Kaestner, K. H. Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev. Biol. 278, 484–495 (2005).

    CAS  PubMed  Google Scholar 

  96. Zhao, R. et al. GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol. Cell Biol. 25, 2622–2631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Holtzinger, A. & Evans, T. Gata4 regulates the formation of multiple organs. Development 132, 4005–4014 (2005).

    CAS  PubMed  Google Scholar 

  98. Dong, P. D. et al. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nature Genet. 39, 397–402 (2007).

    CAS  PubMed  Google Scholar 

  99. Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet. 8, 9–22 (2007).

    CAS  PubMed  Google Scholar 

  100. Odom, D. T. et al. Core transcriptional regulatory circuitry in human hepatocytes. Mol. Syst. Biol. 2, 2006 0017 (2006). This paper is a Herculean genome location analysis of liver transcription factors, revealing diverse ways in which the proteins regulate one another and other target genes. It presents a quantitative, comparative sense of how different factors bind to different promoters in the adult liver.

    PubMed  PubMed Central  Google Scholar 

  101. Odom, D. T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kyrmizi, I. et al. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 20, 2293–2305 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    CAS  PubMed  Google Scholar 

  104. Overturf, K., al-Dhalimy, M., Ou, C. N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151, 1273–1280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Teta, M., Rankin, M. M., Long, S. Y., Stein, G. M. & Kushner, J. A. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev. Cell 12, 817–826 (2007). This paper is a creative and thoughtful approach to investigate the lineages of beta cells during pancreatic growth and regeneration, using different tags on nucleosides that can be incorporated into replicating DNA.

    CAS  PubMed  Google Scholar 

  106. Fausto, N. & Campbell, J. S. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev. 120, 117–130 (2003).

    CAS  PubMed  Google Scholar 

  107. Taub, R. Liver regeneration: from myth to mechanism. Nature Rev. Mol. Cell Biol. 5, 836–847 (2004).

    CAS  Google Scholar 

  108. Bonner-Weir, S. & Weir, G. C. New sources of pancreatic beta-cells. Nature Biotechnol. 23, 857–861 (2005).

    CAS  Google Scholar 

  109. Xu X. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008). This is a beautiful study using diverse methods to show that Neurog3 becomes activated in response to partial pancreatic duct ligation, and that Neurog3 is necessary to help promote the development of new beta cells from multipotent progenitors.

    CAS  PubMed  Google Scholar 

  110. Slack, J. M. Metaplasia and transdifferentiation: from pure biology to the clinic. Nature Rev. Mol. Cell Biol. 8, 369–378 (2007). This is an excellent and thoughtful overview of topics related to the present review.

    CAS  Google Scholar 

  111. Dabeva, M. S. et al. Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc. Natl. Acad. Sci. USA 94, 7356–7361 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rao, M. S. et al. Role of periductal and ductalar epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage: a change in the differentiation commitment. Am. J. Pathol. 134, 1069–1086 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, X., Al-Dhalimy, M., Lagasse, E., Finegold, M. & Grompe, M. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am. J. Pathol. 158, 571–579 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Krakowski, M. L. et al. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am. J. Pathol. 154, 683–691 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Shanmukhappa, K., Mourya, R., Sabla, G. E., Degen, J. L. & Bezerra, J. A. Hepatic to pancreatic switch defines a role for hemostatic factors in cellular plasticity in mice. Proc. Natl Acad. Sci. USA 102, 10182–10187 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    CAS  PubMed  Google Scholar 

  117. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    CAS  PubMed  Google Scholar 

  118. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

    CAS  PubMed  Google Scholar 

  119. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    CAS  PubMed  Google Scholar 

  120. Willenbring, H. et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nature Med. 10, 744–748 (2004).

    CAS  PubMed  Google Scholar 

  121. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Jensen, C. H. et al. Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. Am. J. Pathol. 164, 1347–1359 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Le Douarin, N. M. On the origin of pancreatic endocrine cells. Cell 53, 169–171 (1988).

    CAS  PubMed  Google Scholar 

  124. Li, H. & Edlund, H. Persistent expression of Hlxb9 in the pancreatic epithelium impairs pancreatic development. Dev. Biol. 240, 247–253 (2001).

    CAS  PubMed  Google Scholar 

  125. Shen, C. N., Slack, J. M. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol. 2, 879–887 (2000).

    CAS  PubMed  Google Scholar 

  126. Horb, M. E., Shen, C. N., Tosh, D. & Slack, J. M. Experimental conversion of liver to pancreas. Curr. Biol. 13, 105–115 (2003).

    CAS  PubMed  Google Scholar 

  127. Jarikji, Z. H. et al. Differential ability of Ptf1a and Ptf1a-VP16 to convert stomach, duodenum and liver to pancreas. Dev. Biol. 304, 786–799 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kojima, H. et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nature Med. 9, 596–603 (2003).

    CAS  PubMed  Google Scholar 

  129. Sapir, T. et al. Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells. Proc. Natl Acad. Sci. USA 102, 7964–7969 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Collombat, P. et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 17, 2591–2603 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Collombat, P. et al. Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 117, 961–970 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). This is the first in a series of papers on the use of four transduced transcription factor genes to convert fibroblast cells to iPS cells — a major discovery for the stem cell and reprogramming fields.

    CAS  PubMed  Google Scholar 

  133. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    CAS  PubMed  Google Scholar 

  134. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  135. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  136. Chiang, M. K. & Melton, D. A. Single-cell transcript analysis of pancreas development. Dev. Cell 4, 383–393 (2003).

    CAS  PubMed  Google Scholar 

  137. Beres, T. M. et al. PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol. Cell Biol. 26, 117–130 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Masui, T., Long, Q., Beres, T. M., Magnuson, M. A. & MacDonald, R. J. Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev. 21, 2629–2643 (2007). This is a definitive study showing that the essential early pancreatic transcription factor Ptf1a uses different RPBJ subunits at different stages of pancreatic development, thereby changing the specificity and function of the transcription factor complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    CAS  PubMed  Google Scholar 

  140. Afelik, S., Chen, Y. & Pieler, T. Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. Genes Dev. 20, 1441–1446 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Akazawa, H. et al. Targeted disruption of the homeobox transcription factor Bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cells 5, 499–513 (2000).

    CAS  PubMed  Google Scholar 

  142. Lettice, L. A. et al. The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc. Natl Acad. Sci. USA 96, 9695–9700 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tribioli, C. & Lufkin, T. The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126, 5699–5711 (1999).

    CAS  PubMed  Google Scholar 

  144. Asayesh, A. et al. Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1−/− mice. Genes Dev. 20, 2208–2213 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sumazaki, R. et al. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nature Genet. 36, 83–87 (2004).

    CAS  PubMed  Google Scholar 

  146. Stanger, B. Z., Tanaka, A. J. & Melton, D. A. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 445, 886–891 (2007). This beautiful study uses genetically engineered mice and shows that there are a limited number of pancreatic progenitor cells, whereas liver progenitors are capable of replenishing their numbers.

    CAS  PubMed  Google Scholar 

  147. Brennand, K., Huangfu, D. & Melton, D. All beta cells contribute equally to islet growth and maintenance. PLoS Biol. 5, e163 (2007).

    PubMed  PubMed Central  Google Scholar 

  148. Heit, J. J., Karnik, S. K. & Kim, S. K. Intrinsic regulators of pancreatic beta-cell proliferation. Annu. Rev. Cell Dev. Biol. 22, 311–338 (2006).

    CAS  PubMed  Google Scholar 

  149. Sadler, K. C., Krahn, K. N., Gaur, N. A. & Ukomadu, C. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc. Natl Acad. Sci. USA 104, 1570–1575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Arima, Y. et al. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S. transition. Genes Cells 9, 131–142 (2004).

    CAS  PubMed  Google Scholar 

  151. Jeanblanc, M. et al. The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S. transition during the cell cycle. Oncogene 24, 7337–7345 (2005).

    CAS  PubMed  Google Scholar 

  152. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Crnogorac-Jurcevic, T. et al. Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129, 1454–1463 (2005).

    CAS  PubMed  Google Scholar 

  154. Field, H. A., Dong, P. D., Beis, D. & Stainier, D. Y. Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev. Biol. 261, 197–208 (2003).

    CAS  PubMed  Google Scholar 

  155. Ward, A. B., Warga, R. M. & Prince, V. E. Origin of the zebrafish endocrine and exocrine pancreas. Dev. Dyn. 236, 1558–1569 (2007).

    PubMed  Google Scholar 

  156. Sadler, K. C., Amsterdam, A., Soroka, C., Boyer, J. & Hopkins, N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132, 3561–3572 (2005).

    CAS  PubMed  Google Scholar 

  157. Watanabe, T. et al. Mutations affecting liver development and function in Medaka, Oryzias latipes, screened by multiple criteria. Mech. Dev. 121, 791–802 (2004).

    CAS  PubMed  Google Scholar 

  158. Hartwell, L. H., Culotti, J. & Reid, B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl Acad. Sci. USA 66, 352–359 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bossard, P. & Zaret, K. S. GATA transcription factors as potentiators of gut endoderm differentiation. Development 125, 4909–4917 (1998).

    CAS  PubMed  Google Scholar 

  160. Cirillo, L. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FOXA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    CAS  PubMed  Google Scholar 

  161. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    CAS  PubMed  Google Scholar 

  162. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    CAS  PubMed  Google Scholar 

  163. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotech. 20 Feb 2008 (doi:10.1038/nbt1393). This paper shows that early-stage pancreatic endoderm from ES cells is more efficient at generating functional beta-like cells, following mouse transplantation, than had previously been observed for later-stage endocrine cells from ES cells.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks D. Freedman-Cass for comments on the manuscript and E. Pytko for help in preparing the manuscript. Work in the author's laboratory is supported by grants from the National Institutes of Health, including from the Institutes of General Medical Sciences; Diabetes, Digestive, and Kidney Diseases; and Cancer; as well as from the Mathers Charitable Foundation and the W. W. Smith Charitable Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Kenneth Zaret's homepage

Glossary

Endoderm

One of the three primary germ layers (including mesoderm and ectoderm) that result from embryonic gastrulation. The endoderm gives rise to the gut tissues, including the thyroid, lung, liver, pancreas, stomach and intestines.

Amniotes

Vertebrates (including reptiles, birds, and mammals) that contain an amnion — an extra-embryonic layer that secretes amniotic fluid and thus provides an aqueous environment for the embryo during early development.

Fate mapping

A procedure whereby cells are labelled with a dye or a genetic mark such that, following cell replication, both descendants will retain the label — meaning that the descendant cell types or tissues can be traced.

Ventral midline

A line of cells that extend from the anterior ventral region of the foregut to the posterior ventral region of the foregut, in amniote embryos.

Paraxial mesoderm

An early derivative of mesoderm after gastrulation; located between the notochord and the lateral plate mesoderm and gives rise to somites — transient structures that lead to vertebrae, ribs, dermis of the dorsal skin, and the skeletal muscles of the back, body wall and limbs.

Lateral plate mesoderm

One of the early derivatives of mesoderm after gastrulation; located distal to the notochord and paraxial mesoderm and gives rise to heart, blood vessels, blood cells and the lining of the body cavities.

Septum transversum mesenchyme

Mesodermal cells that are derived from the most rostral, distal portion of the lateral plate mesoderm. Septum transversum mesenchyme cells contribute to the heart, the mesentery around the liver and the thoracic diaphragm. Notably, during hepatic induction in amniotes, septum transversum mesenchyme cells help to induce liver growth and differentiation and might contribute to the endothelial population during liver vasculature development.

In vivo footprinting

A method to identify specific nucleotide sequences that are occupied by proteins in native nuclear chromatin.

Chromatin immunoprecipitation

(ChIP). A technique that isolates sequences from soluble DNA–chromatin extracts (complexes of DNA and protein) by using antibodies that recognize specific chromosomal proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaret, K. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 9, 329–340 (2008). https://doi.org/10.1038/nrg2318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing