Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A local autocrine axis in the testes that regulates spermatogenesis

Abstract

Spermiation—the release of mature spermatozoa from Sertoli cells into the seminiferous tubule lumen—occurs by the disruption of an anchoring device known as the apical ectoplasmic specialization (apical ES). At the same time, the blood–testis barrier (BTB) undergoes extensive restructuring to facilitate the transit of preleptotene spermatocytes. While these two cellular events take place at opposite ends of the Sertoli cell epithelium, the events are in fact tightly coordinated, as any disruption in either process will lead to infertility. A local regulatory axis exists between the apical ES and the BTB in which biologically active laminin fragments produced at the apical ES by the action of matrix metalloproteinase 2 can regulate BTB restructuring directly or indirectly via the hemidesmosome. Equally important, polarity proteins play a crucial part in coordinating cellular events within this apical ES–BTB–hemidesmosome axis. Additionally, testosterone and cytokines work in concert to facilitate BTB restructuring, which enables the transit of spermatocytes while maintaining immunological barrier function. Herein, we will discuss this important autocrine-based cellular axis that parallels the hormonal-based hypothalamic–pituitary–testicular axis that regulates spermatogenesis. This local regulatory axis is the emerging target for male contraception.

Key Points

  • The apical ectoplasmic specialization–BTB (blood–testis barrier)–hemidesmosome axis, a novel functional axis in the testis, coordinates events occurring at opposite ends of the seminiferous epithelium during spermatogenesis

  • To maintain immunological barrier function at the BTB during the transit of spermatocytes, 'new' tight junction fibrils are assembled below migrating spermatocytes before 'old' tight junction fibrils are disassembled

  • Protein endocytosis, recycling, transcytosis and endosome-mediated or ubiquitin-mediated protein degradation play a critical part in the homeostasis of this apical ectoplasmic specialization–BTB–hemidesmosome functional axis

  • Polarity proteins are important regulators of endocytic vesicle-mediated protein trafficking events in the seminiferous epithelium during spermatogenesis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-section of a mammalian seminiferous tubule, which is composed of the seminiferous epithelium constituted by Sertoli cells and germ cells at different stages of their development.
Figure 2: Anatomy of the seminiferous epithelium in the mammalian testis.
Figure 3: Structural domains of a typical laminin chain.
Figure 4: The apical ES–BTB–hemidesmosome functional axis in the testis.
Figure 5: Polarity protein complexes establish cell polarity.
Figure 6: Role of polarity proteins and nonreceptor protein kinases in the apical ES–BTB functional axis.
Figure 7: Role of the TBC in apical ES dynamics during spermiogenesis.

Similar content being viewed by others

References

  1. Sharpe, R. M. in The Physiology of Reproduction (eds Knobil, E. & Neill, J. D.) 1363–1434 (Raven Press, New York, 1994).

    Google Scholar 

  2. Sokol, R. Z. Endocrinology of male infertility: evaluation and treatment. Semin. Reprod. Med. 27, 149–158 (2009).

    PubMed  Google Scholar 

  3. Kakar, S. S., Malik, M. T., Winters, S. J. & Mazhawidza, W. Gonadotropin-releasing hormone receptors: structure, expression, and signaling transduction. Vitam. Horm. 69, 151–207 (2004).

    CAS  PubMed  Google Scholar 

  4. Carreau, S., Wolczynski, S. & Galeraud-Denis, I. Aromatase, oestrogens and human reproduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1571–1579 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. McLachlan, R. I. et al. Hormonal regulation of spermatogenesis in primates and man: insights for development of the male hormonal contraceptive. J. Androl. 23, 149–162 (2002).

    CAS  PubMed  Google Scholar 

  6. Mather, J. P., Moore, A. & Li, R. H. Activins, inhibins, and follistatins: further thoughts on a growing family of regulators. Proc. Soc. Exp. Biol. Med. 215, 209–222 (1997).

    CAS  PubMed  Google Scholar 

  7. Wang, R. S., Yeh, S., Tzeng, C. R. & Chang, C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr. Rev. 30, 119–132 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. Lyon, M. F. & Hawkes, S. G. X-linked gene for testicular feminization in the mouse. Nature 227, 1217–1219 (1970).

    CAS  PubMed  Google Scholar 

  9. De Gendt, K. et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl Acad. Sci. USA 101, 1327–1332 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang, C. et al. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc. Natl Acad. Sci. USA 101, 6876–6881 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Holdcraft, R. W. & Braun, R. E. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131, 459–467 (2004).

    CAS  PubMed  Google Scholar 

  12. Welsh, M., Saunders, P. T., Atanassova, N., Sharpe, R. M. & Smith, L. B. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J. 23, 4218–4230 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Abel, M. H. et al. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141, 1795–1803 (2000).

    CAS  PubMed  Google Scholar 

  14. Kumar, T. R., Wang, Y., Lu, N. & Matzuk, M. M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 15, 201–204 (1997).

    CAS  PubMed  Google Scholar 

  15. Krishnamurthy, H., Danilovich, N., Morales, C. R. & Sairam, M. R. Qualitative and quantitative decline in spermatogenesis of the follicle-stimulating hormone receptor knock-out (FORKO) mouse. Biol. Reprod. 62, 1146–1159 (2000).

    CAS  PubMed  Google Scholar 

  16. Abel, M. H. et al. Spermatogenesis and Sertoli cell activity in mice lacking Sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 149, 3279–3285 (2008).

    CAS  PubMed  Google Scholar 

  17. de Kretser, D. M. & Kerr, J. B. in The Physiology of Reproduction, Vol. 1 (eds Knobil, E. & Neill, J.) 837–932 (Raven Press, New York, 1988).

    Google Scholar 

  18. Carreau, S. & Hess, R. A. Oestrogens and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1517–1535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Carreau, S. Estrogen: Roles in spermatogenesis. Immun. Endocr. Metab. Agents Med. Chem. 8, 59–65 (2008).

    CAS  Google Scholar 

  20. Shaha, C. in Molecular Mechanisms in Spermatogenesis (ed. Cheng, C. Y.) 42–64 (Landes Bioscience and Springer Science+Business Media, Austin, TX, 2008).

    Google Scholar 

  21. Tripathi, R., Mishra, D. P. & Shaha, C. Male germ cell development: turning on the apoptotic pathways. J. Reprod. Immunol. 83, 31–35 (2009).

    CAS  PubMed  Google Scholar 

  22. D'Souza, R. et al. Effect of high intratesticular estrogen on the seminiferous epithelium in adult male rats. Mol. Cell. Endocrinol. 241, 41–48 (2005).

    CAS  PubMed  Google Scholar 

  23. Pentikäinen, V., Erkkilä, K., Suomalainen, L., Parvinen, M. & Dunkel, L. Estradiol acts as a germ cell survival factor in the human testis in vitro. J. Clin. Endocrinol. Metab. 85, 2057–2067 (2000).

    PubMed  Google Scholar 

  24. Sirianni, R. et al. The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17beta-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology 149, 5043–5051 (2008).

    CAS  PubMed  Google Scholar 

  25. Lie, P. P., Cheng, C. Y. & Mruk, D. D. Coordinating cellular events during spermatogenesis: A biochemical model. Trends Biochem. Sci. 34, 366–373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dym, M. Basement membrane regulation of Sertoli cells. Endocr. Rev. 15, 102–115 (1994).

    CAS  PubMed  Google Scholar 

  27. Orth, J. M. Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat. Rec. 203, 485–492 (1982).

    CAS  PubMed  Google Scholar 

  28. Nistal, M., Abaurrea, M. A. & Paniagua, R. Morphological and histometric study on the human Sertoli cell from birth to the onset of puberty. J. Anat. 14, 351–363 (1982).

    Google Scholar 

  29. Weber, J. E., Russell, L. D., Wong, V. & Peterson, R. N. Three dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli-Sertoli and Sertoli-germ cell relationships. Am. J. Anat. 167, 163–179 (1983).

    CAS  PubMed  Google Scholar 

  30. Sinha Hikim, A. P. & Swerdloff, R. S. Hormonal and genetic control of germ cell apoptosis in the testis. Rev. Reprod. 4, 38–47 (1999).

    CAS  PubMed  Google Scholar 

  31. Bartke, A. Apoptosis of male germ cells, a generalized or cell type-specific phenomenon? Endocrinology 136, 3–4 (1995).

    CAS  PubMed  Google Scholar 

  32. Setchell, B. P. in Molecular Mechanisms in Spermatogenesis (ed. Cheng, C. Y.) 212–233 (Landes Bioscience/Springer Science+Business Media, Austin, TX, 2008).

    Google Scholar 

  33. Dym, M. & Cavicchia, J. C. Functional morphology of the testis. Biol. Reprod. 18, 1–15 (1978).

    CAS  PubMed  Google Scholar 

  34. Xia, W., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Differential interactions between transforming growth factor-beta3/TbetaR1, TAB1, and CD2AP disrupt blood–testis barrier and Sertoli-germ cell adhesion. J. Biol. Chem. 281, 16799–16813 (2006).

    CAS  PubMed  Google Scholar 

  35. Li, M. W. et al. TNFalpha reversibly disrupts the blood–testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. J. Endocrinol. 190, 313–329 (2006).

    CAS  PubMed  Google Scholar 

  36. Lui, W. Y., Wong, C. H., Mruk, D. D. & Cheng, C. Y. TGF-beta3 regulates the blood–testis barrier dynamics via the p38 mitogen activated protein (MAP) kinase pathway: an in vivo study. Endocrinology 144, 1139–1142 (2003).

    CAS  PubMed  Google Scholar 

  37. Wong, C. H., Mruk, D. D., Lui, W. Y. & Cheng, C. Y. Regulation of blood–testis barrier dynamics: an in vivo study. J. Cell Sci. 117, 783–798 (2004).

    CAS  PubMed  Google Scholar 

  38. Meng, J., Holdcraft, R. W., Shima, J. E., Griswold, M. D. & Braun, R. E. Androgens regulate the permeability of the blood–testis barrier. Proc. Natl Acad. Sci. USA 102, 16696–16670 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, R. S. et al. Androgen receptor in Sertoli cell is essential for germ cell nursery and junction complex formation in mouse testes. Endocrinology 147, 5624–5633 (2006).

    CAS  PubMed  Google Scholar 

  40. Yan, H. H., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Blood–testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J. 22, 1945–1959 (2008).

    CAS  PubMed  Google Scholar 

  41. Li, M. W., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Connexin 43 and plakophilin-2 as a protein complex that regulates blood–testis barrier dynamics. Proc. Natl Acad. Sci. USA 106, 10213–10218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lie, P. P., Cheng, C. Y. & Mruk, D. D. Crosstalk between desmoglein-2/desmocollin-2/Src kinase and coxsackie and adenovirus receptor/ZO-1 protein complexes, regulates blood–testis barrier dynamics. Int. J. Biochem. Cell Biol. 42, 975–986 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Russell, L. Observations on rat Sertoli ectoplasmic ('junctional') specializations in their association with germ cells of the rat testis. Tissue Cell 9, 475–498 (1977).

    CAS  PubMed  Google Scholar 

  44. Vogl, A., Vaid, K. & Guttman, J. in Molecular Mechanisms in Spermatogenesis (ed. Cheng, C. Y.) 186–211 (Landes Bioscience/Springer Science+Business Media, Austin, TX, 2008).

    Google Scholar 

  45. Mruk, D. D., Silvestrini, B. & Cheng, C. Y. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol. Rev. 60, 146–180 (2008).

    CAS  PubMed  Google Scholar 

  46. Wong, C. H. & Cheng, C. Y. The blood–testis barrier: its biology, regulation and physiological role in spermatogenesis. Curr. Top. Dev. Biol. 71, 263–296 (2005).

    CAS  PubMed  Google Scholar 

  47. Setchell, B. P. & Waites, G. M. B. in The Handbook of Physiology, Section 7, Vol. 5 (eds Hamilton, D. W. & Greep, R. O.) 143–172 (American Physiological Society, Washington, D. C., 1975).

    Google Scholar 

  48. Fawcett, D. W., Leak, L. V. & Heidger, P. M. Jr Electron microscopic observations on the structural components of the blood–testis barrier. J. Reprod. Fertil. Suppl. 10, 105–122 (1970).

    CAS  PubMed  Google Scholar 

  49. Dym, M. & Fawcett, D. W. The blood–testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol. Reprod. 3, 308–326 (1970).

    CAS  PubMed  Google Scholar 

  50. Dym, M. The fine structure of the monkey (Macaca) Sertoli cell and its role in maintaining the blood–testis barrier. Anat. Rec. 175, 639–656 (1973).

    CAS  PubMed  Google Scholar 

  51. Fawcett, D. W. Intercellular bridges. Exp. Cell Res. 8, 174–187 (1961).

    PubMed  Google Scholar 

  52. Mruk, D. D. & Cheng, C. Y. Delivering non-hormonal contraceptives to men: advances and obstacles. Trends Biotechnol. 26, 90–99 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan, H. H. & Cheng, C. Y. Blood–testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc. Natl Acad. Sci. USA 102, 11722–11727 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan, H. H., Mruk, D. D., Lee, W. M. & Cheng, C. Y. in Molecular Mechanisms in Spermatogenesis (ed. Cheng, C. Y.) 234–254 (Landes Bioscience and Springer Science+Business Media, Austin, TX, 2008).

    Google Scholar 

  55. Lie, P. P., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Cytoskeletal dynamics and spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1581–1592 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan, H. H., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays 29, 36–48 (2007).

    PubMed  PubMed Central  Google Scholar 

  57. Wong, E. W., Mruk, D. D. & Cheng, C. Y. Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochim. Biophys. Acta 1778, 692–708 (2008).

    CAS  PubMed  Google Scholar 

  58. Yan, H. H. & Cheng, C. Y. Laminin alpha3 forms a complex with beta3 and gamma3 chains that serves as the ligand for alpha6beta1-integrin at the apical ectoplasmic specialization in adult rat testes. J. Biol. Chem. 281, 17286–17303 (2006).

    CAS  PubMed  Google Scholar 

  59. Siu, M. K. & Cheng, C. Y. Interactions of proteases, protease inhibitors, and the beta1 integrin/laminin gamma3 protein complex in the regulation of ectoplasmic specialization dynamics in the rat testis. Biol. Reprod. 70, 945–964 (2004).

    CAS  PubMed  Google Scholar 

  60. Lee, N. P., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Is the cadherin/catenin complex a functional unit of cell-cell-actin-based adherens junctions (AJ) in the rat testis? Biol. Reprod. 68, 489–508 (2003).

    CAS  PubMed  Google Scholar 

  61. Johnson, K. & Boekelheide, K. Dynamic testicular adhesion junctions are immunologically unique. II. Localization of classic cadherins in rat testis. Biol. Reprod. 66, 992–1000 (2002).

    CAS  PubMed  Google Scholar 

  62. Wolski, K. M., Perrault, C., Tran-Son-Tay, R. & Cameron, D. F. Strength measurement of the Sertoli-spermatid junctional complex. J. Androl. 26, 354–359 (2005).

    PubMed  Google Scholar 

  63. Cheng, C. Y. et al. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data. Contraception 72, 251–261 (2005).

    CAS  PubMed  Google Scholar 

  64. Wolski, K. M., Mruk, D. D. & Cameron, D. F. The Sertoli-spermatid junctional complex adhesion strength is affected in vitro by adjudin. J. Androl. 27, 790–794 (2006).

    CAS  PubMed  Google Scholar 

  65. Chen, Y. M., Lee, N. P., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Fer kinase/FerT and adherens junction dynamics in the testis: an in vitro and in vivo study. Biol. Reprod. 69, 656–672 (2003).

    CAS  PubMed  Google Scholar 

  66. Yan, H. H., Mruk, D. D., Wong, E. W., Lee, W. M. & Cheng, C. Y. An autocrine axis in the testis that coordinates spermiation and blood–testis barrier restructuring during spermatogenesis. Proc. Natl Acad. Sci. USA 105, 8950–8955 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Carraway, C. A. & Carraway, K. L. Sequestration segregation of receptor kinases in epithelial cells: Implications for ErbB2 oncogenesis. Sci. STKE 2007, re3 (2007).

    PubMed  Google Scholar 

  68. Durbeej, M. Laminins. Cell Tissue Res. 339, 259–268 (2010).

    CAS  PubMed  Google Scholar 

  69. Siu, M. K. & Cheng, C. Y. Dynamic cross-talk between cells and the extracellular matrix in the testis. Bioessays 26, 978–992 (2004).

    CAS  PubMed  Google Scholar 

  70. Tzu, J. & Marinkovich, M. P. Bridging structure with function: Structure, regulatory, and developmental role of laminins. Int. J. Biochem. Cell Biol. 40, 199–214 (2008).

    CAS  PubMed  Google Scholar 

  71. Yan, H. H., Mruk, D. D. & Cheng, C. Y. Junction restructuring and spermatogenesis: the biology, regulation, and implication in male contraceptive development. Curr. Top. Dev. Biol. 80, 57–92 (2008).

    CAS  PubMed  Google Scholar 

  72. Adair-Kirk, T. L. & Senior, R. M. Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell Biol. 40, 1101–1110 (2008).

    CAS  PubMed  Google Scholar 

  73. Koch, M. et al. Characterization and expression of the laminin gamma3 chain: a novel, non-basement membrane-associated, laminin chain. J. Cell Biol. 145, 605–618 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Obholz, K. L., Akopyan, A., Waymire, K. G. & MacGregor, G. R. FNDC3A is required for adhesion between spermatids and Sertoli cells. Dev. Biol. 298, 498–513 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bulgakova, N. A. & Knust, E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J. Cell Sci. 122, 2587–2596 (2009).

    CAS  PubMed  Google Scholar 

  76. Assémat, E., Bazellières, E., Pallesi-Pocachard, E., Le Bivic, A. & Massey-Harroche, D. Polarity complex proteins. Biochim. Biophys. Acta 1778, 614–630 (2008).

    PubMed  Google Scholar 

  77. Shin, K., Fogg, V. C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol. 22, 207–235 (2006).

    CAS  PubMed  Google Scholar 

  78. Wu, J. & Mlodzik, M. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol. 19, 295–305 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol. 9, 846–859 (2008).

    CAS  PubMed  Google Scholar 

  80. Wong, E. W., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Par3/Par6 polarity complex coordinates apical ectoplasmic specialization and blood–testis barrier restructuring during spermatogenesis. Proc. Natl Acad. Sci. USA 105, 9657–9662 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wong, E. W. & Cheng, C. Y. Polarity proteins and cell-cell interactions in the testis. Int. Rev. Cell. Mol. Biol. 278, 309–353 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Lee, M. & Vasioukhin, V. Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci. 121, 1141–1150 (2008).

    CAS  PubMed  Google Scholar 

  83. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).

    CAS  PubMed  Google Scholar 

  84. Wong, E. W., Sun, S., Li, M. W., Lee, W. M. & Cheng, C. Y. 14-3-3 protein regulates cell adhesion in the seminiferous epithelium of rat testes. Endocrinology 150, 4713–4723 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Russell, L. D. Further observations on tubulobulbar complexes formed by late spermatids and Sertoli cells in the rat testis. Anat. Rec. 194, 213–232 (1979).

    CAS  PubMed  Google Scholar 

  86. Russell, L. D. Spermatid-Sertoli tubulobulbar complexes as devices for elimination of cytoplasm from the head region in late spermatids of the rat. Anat. Rec. 194, 233–246 (1979).

    CAS  PubMed  Google Scholar 

  87. Russell, L. D. Observations on the inter-relationships of Sertoli cells at the level of the blood–testis barrier: evidence for formation and resorption of Sertoli-Sertoli tubulobulbar complexes during the spermatogenic cycle of the rat. Am. J. Anat. 155, 259–279 (1979).

    CAS  PubMed  Google Scholar 

  88. Young, J. S., Guttman, J. A., Vaid, K. S. & Vogl, A. W. Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol. Reprod. 80, 162–174 (2009).

    CAS  PubMed  Google Scholar 

  89. Young, J. S., Guttman, J. A., Vaid, K. S., Shahinian, H. & Vogl, A. W. Cortactin (CTTN), N-WASP (WASL), and clathrin (CLTC) are present at podosome-like tubulobulbar complexes in the rat testis. Biol. Reprod. 80, 153–161 (2009).

    CAS  PubMed  Google Scholar 

  90. Fletcher, S. J. & Rappoport, J. Z. The role of vesicle trafficking in epithelial cell motility. Biochem. Soc. Trans. 37, 1072–1076 (2009).

    CAS  PubMed  Google Scholar 

  91. Derivery, E. & Gautreau, A. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 32, 119–131 (2010).

    CAS  PubMed  Google Scholar 

  92. Walsh, S. V., Hopkins, A. M. & Nusrat, A. Modulation of tight junction structure and function by cytokines. Adv. Drug Deliv. Rev. 41, 303–313 (2000).

    CAS  PubMed  Google Scholar 

  93. Xia, W., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Cytokines and junction restructuring during spermatogenesis—a lesson to learn from the testis. Cytokine Growth Factor Rev. 16, 469–493 (2005).

    CAS  PubMed  Google Scholar 

  94. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS  PubMed  Google Scholar 

  95. Li, M. W., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Cytokines and junction restructuring events during spermatogenesis in the testis: An emerging concept of regulation. Cytokine Growth Factor Rev. 20, 329–338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Koch, S. & Nusrat, A. Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Ann. NY Acad. Sci. 1165, 220–227 (2009).

    CAS  PubMed  Google Scholar 

  97. Kirschner, N. et al. Alteration of tight junction proteins is an early event in psoriasis: Putative involvement of proinflammatory cytokines. Am. J. Pathol. 175, 1095–1106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Clayburgh, D. R. et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest. 115, 2702–2715 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lui, W. Y., Lee, W. M. & Cheng, C. Y. Transforming growth factor-b3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-1, and claudin-11. Endocrinology 142, 1865–1877 (2001).

    CAS  PubMed  Google Scholar 

  100. Lui, W. Y., Lee, W. M. & Cheng, C. Y. Transforming growth factor-beta3 regulates the dynamics of Sertoli cell tight junctions via the p38 mitogen-activated protein kinase pathway. Biol. Reprod. 68, 1597–1612 (2003).

    CAS  PubMed  Google Scholar 

  101. Siu, M. K., Lee, W. M. & Cheng, C. Y. The interplay of collagen IV, tumor necrosis factor-alpha, gelatinase B (matrix metalloprotease-9), and tissue inhibitor of metalloproteases-1 in the basal lamina regulates Sertoli cell-tight junction dynamics in the rat testis. Endocrinology 144, 371–387 (2003).

    CAS  PubMed  Google Scholar 

  102. Xia, W. & Cheng, C. Y. TGF-beta3 regulates anchoring junction dynamics in the seminiferous epithelium of the rat testis via the Ras/ERK signaling pathway: An in vivo study. Dev. Biol. 280, 321–343 (2005).

    CAS  PubMed  Google Scholar 

  103. Wong, C. H., Mruk, D. D., Siu, M. K. & Cheng, C. Y. Blood–testis barrier dynamics are regulated by alpha2-macroglobulin via the c-Jun N-terminal protein kinase pathway. Endocrinology 146, 1893–1908 (2005).

    CAS  PubMed  Google Scholar 

  104. Pentikäinen, V. et al. TNF-alpha down-regulated the Fas ligand and inhibits germ cell apoptosis in the human testis. J. Clin. Endocrinol. Metab. 86, 4480–4488 (2001).

    PubMed  Google Scholar 

  105. Suominen, J. S., Wang, Y., Kaipia, A. & Toppari, J. Tumor necrosis factor-alpha (TNF-alpha) promotes cell survival during spermatogenesis, and this effect can be blocked by infliximab, a TNF-alpha antagonist. Eur. J. Endocrinol. 151, 629–640 (2004).

    CAS  PubMed  Google Scholar 

  106. Wong, V. & Russell, L. D. Three-dimensional reconstruction of a rat stage V Sertoli cell: I. Methods, basic configuration, and dimensions. Am. J. Anat. 167, 143–161 (1983).

    CAS  PubMed  Google Scholar 

  107. Lui, W. Y., Lee, W. M. & Cheng, C. Y. TGF-betas: their role in testicular function and Sertoli cell tight junction dynamics. Int. J. Androl. 26, 147–160 (2003).

    CAS  PubMed  Google Scholar 

  108. Loveland, K. L., Dias, V., Meachem, S. & Rajpert-De Meyts, E. The transforming growth factor-beta superfamily in early spermatogenesis: potential relevance to testicular dysgenesis. Int. J. Androl. 30, 377–384 (2007).

    CAS  PubMed  Google Scholar 

  109. O'Bryan, M. K. & Hedger, M. P. in Molecular Mechanisms in Spermatogenesis (ed. Cheng, C. Y.) 92–114 (Landes Bioscience and Springer Science+Business Media, Austin, TX, 2008).

    Google Scholar 

  110. Lui, W. Y. & Cheng, C. Y. Regulation of cell junction dynamics by cytokines in the testis—a molecular and biochemical perspective. Cytokine Growth Factor Rev. 18, 299–311 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, M. W., Mruk, D. D. & Cheng, C. Y. “Unlocking” the blood–testis barrier and the ectoplasmic specialization by cytokines during spermatogenesis: Emerging targets for male contraception. Immun. Endocr. Metab. Agents Med. Chem. 8, 20–27 (2008).

    CAS  Google Scholar 

  112. Li, M. W., Mruk, D. D. & Cheng, C. Y. Mitogen-activated protein kinases in male reproductive function. Trends Mol. Med. 15, 159–168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Xia, W., Wong, E. W., Mruk, D. D. & Cheng, C. Y. TGF-beta3 and TNFalpha perturb blood–testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev. Biol. 327, 48–61 (2009).

    CAS  PubMed  Google Scholar 

  114. Syed, V. et al. Residual bodies activate Sertoli cell interleukin-1alpha (IL-1alpha) release, which triggers IL-6 production by an autocrine mechanism, through the lipoxygenase pathway. Endocrinology 136, 3070–3078 (1995).

    CAS  PubMed  Google Scholar 

  115. Sarkar, O., Mathur, P. P., Cheng, C. Y. & Mruk, D. D. Interleukin 1 alpha (IL1A) is a novel regulator of the blood–testis barrier in the rat. Biol. Reprod. 78, 445–454 (2008).

    CAS  PubMed  Google Scholar 

  116. Siu, E. R., Wong, E. W., Mruk, D. D., Porto, C. S. & Cheng, C. Y. Focal adhesion kinase is a blood–testis barrier regulator. Proc. Natl Acad. Sci. USA 106, 9298–9303 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chung, N. P. & Cheng, C. Y. Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142, 1878–1888 (2001).

    CAS  PubMed  Google Scholar 

  118. Janecki, A., Jakubowiak, A. & Steinberger, A. Effect of cadmium chloride on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment cultures—a new model for toxicological investigations of the “blood–testis” barrier in vitro. Toxicol. Appl. Pharmacol. 112, 51–57 (1992).

    CAS  PubMed  Google Scholar 

  119. Turner, T. T. et al. On the androgen microenvironment of maturing spermatozoa. Endocrinology 115, 1925–1932 (1984).

    CAS  PubMed  Google Scholar 

  120. Jarow, J. P. & Zirkin, B. R. The androgen microenvironment of the human testis and hormonal control of spermatogenesis. Ann. NY Acad. Sci. 1061, 208–220 (2005).

    CAS  PubMed  Google Scholar 

  121. Beardsley, A., Robertson, D. M. & O'Donnell, L. A complex containing alpha6beta1-integrin and phosphorylated focal adhesion kinase between Sertoli cells and elongated spermatids during spermatid release from the seminiferous epithelium. J. Endocrinol. 190, 759–770 (2006).

    CAS  PubMed  Google Scholar 

  122. Zhang, J. et al. Regulation of Sertoli-germ cell adherens junction dynamics via changes in protein-protein interactions of the N-cadherin-beta-catenin protein complex which are possibly mediated by c-Src and myotubularin-related protein 2: an in vivo study using an androgen suppression model. Endocrinology 146, 1268–1284 (2005).

    CAS  PubMed  Google Scholar 

  123. Wong, C. H. et al. Regulation of ectoplasmic specialization dynamics in the seminiferous epithelium by focal adhesion-associated proteins in testosterone-suppressed rat testes. Endocrinology 146, 1192–1204 (2005).

    CAS  PubMed  Google Scholar 

  124. Xia, W., Wong, C. H., Lee, N. P., Lee, W. M. & Cheng, C. Y. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood–testis barrier integrity: an in vivo study using an androgen suppression model. J. Cell. Physiol. 205, 141–157 (2005).

    CAS  PubMed  Google Scholar 

  125. Delfino, F. J., Boustead, J. N., Fix, C. & Walker, W. H. NF-kappaB and TNF-alpha stimulate androgen receptor expression in Sertoli cells. Mol. Cell. Endocrinol. 201, 1–12 (2003).

    CAS  PubMed  Google Scholar 

  126. Yao, P. L., Lin, Y. C. & Richburg, J. H. Mono-(2-ethylhexyl) phthalate-induced disruption of junctional complexes in the seminiferous epithelium of the rodent testis is mediated by MMP2. Biol. Reprod. 82, 516–527 (2010).

    CAS  PubMed  Google Scholar 

  127. Yao, P. L., Lin, Y. C. & Richburg, J. H. TNF alpha-mediated disruption of spermatogenesis in response to Sertoli cell injury in rodents is partially regulated by MMP2. Biol. Reprod. 80, 581–589 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Heino, J. & Käpylä, J. Cellular receptors of extracellular matrix molecules. Curr. Pharm. Des. 15, 1309–1317 (2009).

    CAS  PubMed  Google Scholar 

  130. Ortega, N. & Werb, Z. New functional roles for non-collagenous domains of basement membrane collagens. J. Cell Sci. 115, 4201–4214 (2002).

    CAS  PubMed  Google Scholar 

  131. Heino, J. The collagen family members as cell adhesion proteins. Bioessays 29, 1001–1010 (2007).

    CAS  PubMed  Google Scholar 

  132. Siu, E. R. et al. An occludin-focal adhesion kinase protein complex at the blood–testis barrier: a study using the cadmium model. Endocrinology 150, 3336–3344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Siu, M. K., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Adhering junction dynamics in the testis are regulated by an interplay of beta1-integrin and focal adhesion complex-associated proteins. Endocrinology 144, 2141–2163 (2003).

    CAS  PubMed  Google Scholar 

  134. Boutros, T., Chevet, E. & Metrakos, P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: Roles in cell growth, death, and cancer. Pharmacol. Rev. 60, 261–310 (2008).

    CAS  PubMed  Google Scholar 

  135. Lee, N. P. & Cheng, C. Y. Protein kinases and adherens junction dynamics in the seminiferous epithelium of the rat testis. J. Cell. Physiol. 202, 344–360 (2005).

    CAS  PubMed  Google Scholar 

  136. Setchell, B. P. & Waites, G. M. Changes in the permeability of the testicular capillaries and of the “blood–testis barrier” after injection of cadmium chloride in the rat. J. Endocrinol. 47, 81–86 (1970).

    CAS  PubMed  Google Scholar 

  137. Hew, K. W., Heath, G. L., Jiwa, A. H. & Welsh, M. J. Cadmium in vivo causes disruption of tight junction-associated microfilaments in rat Sertoli cells. Biol. Reprod. 49, 840–849 (1993).

    CAS  PubMed  Google Scholar 

  138. Sakakibara, A., Furuse, M., Saitou, M., Ando-Akatsuka, Y. & Tsukita, S. Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell Biol. 137, 1393–1401 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Tsukamoto, T. & Nigam, S. K. Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am. J. Physiol. Renal Physiol. 276, F737–F750 (1999).

    CAS  Google Scholar 

  140. Lui, W. Y., Lee, W. M. & Cheng, C. Y. Sertoli-germ cell adherens junction dynamics in the testis are regulated by RhoB GTPase via the ROCK/LIMK signaling pathway. Biol. Reprod. 68, 2189–2206 (2003).

    CAS  PubMed  Google Scholar 

  141. Guttman, J. A., Kimel, G. H. & Vogl, A. W. Dynein and plus-end microtubule-dependent motors are associated with specialized Sertoli cell junction plaques (ectoplasmic specializations). J. Cell Sci. 113, 2167–2176 (2000).

    CAS  PubMed  Google Scholar 

  142. Mulholland, D. J., Dedhar, S. & Vogl, A. W. Rat seminiferous epithelium contains a unique junction (ectoplasmic specialization) with signaling properties both of cell/cell and cell/matrix junctions. Biol. Reprod. 64, 396–407 (2001).

    CAS  PubMed  Google Scholar 

  143. Lie, P. P., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood–testis barrier integrity in the seminiferous epithelium. FASEB J. 23, 2555–2567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lie, P. P. et al. Dynamin II interacts with the cadherin- and occludin-based protein complexes at the blood–testis barrier in adult rat testes. J. Endocrinol. 191, 571–586 (2006).

    CAS  PubMed  Google Scholar 

  145. Lee, N. P., Mruk, D. D., Conway, A. M. & Cheng, C. Y. Zyxin, axin, and Wiskott-Aldrich syndrome protein are adaptors that link the cadherin/catenin protein complex to the cytoskeleton at adherens junctions in the seminiferous epithelium of the rat testis. J. Androl. 25, 200–215 (2004).

    CAS  PubMed  Google Scholar 

  146. Cheng, C. Y. & Mruk, D. D. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825–874 (2002).

    CAS  PubMed  Google Scholar 

  147. Vaid, K. S., Guttman, J. A., Singaraja, R. R. & Vogl, A. W. A kinesin is present at unique Sertoli/spermatid adherens junctions in rat and mouse testes. Biol. Reprod. 77, 1037–1048 (2007).

    CAS  PubMed  Google Scholar 

  148. Mruk, D. D., Lau, A. S., Sarkar, O. & Xia, W. Rab4A GTPase-catenin interactions are involved in cell junction dynamics in the testis. J. Androl. 28, 742–754 (2007).

    CAS  PubMed  Google Scholar 

  149. Mruk, D. D. & Lau, A. S. RAB13 participates in ectoplasmic specialization dynamics in the rat testis. Biol. Reprod. 80, 590–601 (2009).

    CAS  PubMed  Google Scholar 

  150. Le Magueresse-Battistoni, B. Serine proteases and serine protease inhibitors in testicular physiology: the plasminogen activation system. Reproduction 134, 721–729 (2007).

    CAS  PubMed  Google Scholar 

  151. Kaitu'u-Lino, T. J., Sluka, P., Foo, C. F. & Stanton, P. G. Claudin-11 expression and localisation is regulated by androgens in rat Sertoli cells in vitro. Reproduction 133, 1169–1179 (2007).

    CAS  PubMed  Google Scholar 

  152. Walker, W. H. Molecular mechanisms of testosterone action in spermatogenesis. Steroids 74, 602–607 (2009).

    CAS  PubMed  Google Scholar 

  153. Barker, C. F. & Billingham, R. E. Immunologically privileged sites. Adv. Immunol. 25, 1–54 (1977).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank current and past members of our laboratory for their investigations and discussions which have helped to form the basis of this article. Studies performed in the authors' laboratory were supported by grants from the National Institutes of Health (NICHD, R01 HD056034 and U54 HD029990 Project 5 to C. Y. C; and R03 HD061401 to D. D. M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, C., Mruk, D. A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol 6, 380–395 (2010). https://doi.org/10.1038/nrendo.2010.71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.71

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing