Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tunable two-impurity Kondo system in an atomic point contact

Abstract

Two magnetic atoms, one attached to the tip of a scanning tunnelling microscope and one adsorbed on a metal surface, each constituting a Kondo system, have been proposed as one of the simplest conceivable systems potentially exhibiting quantum critical behaviour. We have succeeded in implementing this concept experimentally for cobalt dimers clamped between a scanning tunnelling microscope tip and a gold surface. Control of the tip–sample distance with subpicometre resolution enables us to tune the interaction between the two cobalt atoms with unprecedented precision. Electronic transport measurements on this two-impurity Kondo system reveal a rich physical scenario, which is governed by a crossover from local Kondo screening to non-local singlet formation due to antiferromagnetic coupling as a function of separation of the cobalt atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram and experimental realization of the two-impurity Kondo problem.
Figure 2: Preparation of the tip Kondo system.
Figure 3: Spectroscopy of the tip Kondo system.
Figure 4: Measurements on two-impurity Kondo system in tunnelling and transport.
Figure 5: Interaction effects between the cobalt atoms.
Figure 6: Schematic phase diagram emerging from the experiment.

Similar content being viewed by others

References

  1. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ.Press, 1993).

    Book  Google Scholar 

  2. Löhneysen, v. et al. Non-fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).

    Article  ADS  Google Scholar 

  3. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  Google Scholar 

  4. Grigera, S. A. et al. Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7 . Science 294, 329–332 (2001).

    Article  ADS  Google Scholar 

  5. Klein, M. et al. Signature of quantum criticality in photoemission spectroscopy. Phys. Rev. Lett. 101, 266404 (2008).

    Article  ADS  Google Scholar 

  6. Sachdev, S. Quantum criticality: Competing ground states in low dimensions. Science 288, 475–480 (2000).

    Article  ADS  Google Scholar 

  7. Georges, A. & Meir, Y. Electronic correlations in transport through coupled quantum dots. Phys. Rev. Lett. 82, 3508–3511 (1999).

    Article  ADS  Google Scholar 

  8. Jayaprakash, C., Krishna-murthy, H. R. & Wilkins, J. W. Two-impurity Kondo problem. Phys. Rev. Lett. 47, 737–740 (1981).

    Article  ADS  Google Scholar 

  9. Jones, B. A. & Varma, C. M. Study of two magnetic impurities in a fermi gas. Phys. Rev. Lett. 58, 843–846 (1987).

    Article  ADS  Google Scholar 

  10. Jones, B. A., Varma, C. M. & Wilkins, J. W. Low-temperature properties of the two-impurity Kondo hamiltonian. Phys. Rev. Lett. 61, 125–128 (1988).

    Article  ADS  Google Scholar 

  11. López, R., Aguado, R. & Platero, G. Nonequilibrium transport through double quantum dots: Kondo effect versus antiferromagnetic coupling. Phys. Rev. Lett. 89, 136802 (2002).

    Article  ADS  Google Scholar 

  12. Simon, P., López, R. & Oreg, Y. Ruderman–Kittel–Kasuya–Yosida and magnetic-field interactions in coupled Kondo quantum dots. Phys. Rev. Lett. 94, 086602 (2005).

    Article  ADS  Google Scholar 

  13. De Leo, L. & Fabrizio, M. Spectral properties of a two-orbital Anderson impurity model across a non-Fermi-liquid fixed point. Phys. Rev. B 69, 245114 (2004).

    Article  ADS  Google Scholar 

  14. Craig, N. J. et al. Tunable nonlocal spin control in a coupled-quantum dot system. Science 304, 565–567 (2004).

    Article  ADS  Google Scholar 

  15. Jeong, H., Chang, A. M. & Melloch, M. R. Kondo effect in an artificial quantum dot molecule. Science 293, 2221–2223 (2001).

    Article  ADS  Google Scholar 

  16. Chen, W., Jamneala, T., Madhavan, V. & Crommie, M. F. Disappearance of the Kondo resonance for atomically fabricated cobalt dimers. Phys. Rev. B 60, R8529–R8532 (1999).

    Article  ADS  Google Scholar 

  17. Wahl, P. et al. Exchange interaction between single magnetic adatoms. Phys. Rev. Lett. 98, 056601 (2007).

    Article  ADS  Google Scholar 

  18. Néel, N. et al. Two-site Kondo effect in atomic chains, Preprint at http://arxiv.org/abs/1105.3301.

  19. Sela, E. & Affleck, I. Nonequilibrium transport through double quantum dots: Exact results near a quantum critical point. Phys. Rev. Lett 102, 047201 (2009).

    Article  ADS  Google Scholar 

  20. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunnelling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  ADS  Google Scholar 

  21. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Local spectroscopy of a Kondo impurity: Co on Au(111). Phys. Rev. B 64, 165412 (2001).

    Article  ADS  Google Scholar 

  22. Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).

    Article  ADS  Google Scholar 

  23. Limot, L., Kröger, J., Berndt, R., Garcia-Lekue, A. & Hofer, W. A. Atom transfer and single-adatom contacts. Phys. Rev. Lett. 94, 126102 (2005).

    Article  ADS  Google Scholar 

  24. Yazdani, A., Eigler, D. M. & Lang, N. D. Off-resonance conduction through atomic wires. Nature 272, 1921–1924 (1996).

    Google Scholar 

  25. Néel, N. et al. Conductance and Kondo effect in a controlled single-atom contact. Phys. Rev. Lett. 98, 016801 (2007).

    Article  ADS  Google Scholar 

  26. Vitali, L. et al. Kondo effect in single atom contacts: The importance of the atomic geometry. Phys. Rev. Lett. 101, 216802 (2008).

    Article  ADS  Google Scholar 

  27. Néel, N., Kröger, J. & Berndt, R. Kondo effect of a Co atom on Cu(111) in contact with an iron tip. Phys. Rev. B 82, 233401 (2010).

    Article  ADS  Google Scholar 

  28. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  ADS  Google Scholar 

  29. Gupta, J. A., Lutz, C. P., Heinrich, A. J. & Eigler, D. M. Strongly coverage-dependent excitations of adsorbed molecular hydrogen. Phys. Rev. B 71, 115416 (2005).

    Article  ADS  Google Scholar 

  30. Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  31. Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395–450 (2008).

    Article  ADS  Google Scholar 

  32. Plihal, M. & Gadzuk, J. W. Nonequilibrium theory of scanning tunnelling spectroscopy via adsorbate resonances: Nonmagnetic and Kondo impurities. Phys. Rev. B 63, 085404 (2001).

    Article  ADS  Google Scholar 

  33. Lucignano, P., Mazzarello, R., Smogunov, A., Fabrizio, M. & Tosatti, E. Kondo conductance in an atomic nanocontact from first principles. Nature Mater. 8, 563–567 (2009).

    Article  ADS  Google Scholar 

  34. Jacob, D., Haule, K. & Kotliar, G. Kondo effect and conductance of nanocontacts with magnetic impurities. Phys. Rev. Lett. 103, 016803 (2009).

    Article  ADS  Google Scholar 

  35. Tao, K. et al. Switching a single spin on metal surfaces by a STM tip: Ab initio studies. Phys. Rev. Lett. 103, 057202 (2009).

    Article  ADS  Google Scholar 

  36. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  ADS  Google Scholar 

  37. van der Marel, D. & Sawatzky, G. A. Electron–electron interaction and localization in d and f transition metals. Phys. Rev. B 37, 10674–10684 (1988).

    Article  ADS  Google Scholar 

  38. Zaránd, G., Chung, C-H., Simon, P. & Vojta, M. Quantum criticality in a double-quantum-dot system. Phys. Rev. Lett. 97, 166802 (2006).

    Article  ADS  Google Scholar 

  39. Malecki, J., Sela, E. & Affleck, I. The prospect for observing the quantum critical point in double quantum dot systems. Phys. Rev. B 82, 205327 (2010).

    Article  ADS  Google Scholar 

  40. Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  41. Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method for quantum impurity systems. Rev. Mod. Phys. 80, 395–450 (2008).

    Article  ADS  Google Scholar 

  42. Jones, B. A. & Varma, C. M. Study of two magnetic impurities in a Fermi gas. Phys. Rev. Lett. 58, 843–846 (1987).

    Article  ADS  Google Scholar 

  43. Jones, B. A., Varma, C. M. & Wilkins, J. W. Low-temperature properties of the two-impurity Kondo Hamiltonian. Phys. Rev. Lett. 61, 125–128 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to I. Affleck for discussion stimulating our research. Further, we acknowledge discussions with M. Fabrizio and D. Jacob. J.B. and L.D. acknowledge support by The Danish Council for Independent Research, Y-h.Z. by the Chinese Scholarship Council, J.K. by the Deutsche Forschungsgemeinschaft through SFB608 and P.W. and K.K. through SFB767. L.B. acknowledges support by the Alexander–von-Humboldt foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.B. and Y-h.Z. carried out experiments, J.B. analysed the data, L.B. carried out the NRG calculations, P.S. and J.K. provided theoretical support, P.W. carried out the line-shape analysis and J.B., L.D. and P.W. wrote the manuscript. PW, L.D. and K.K. planned and supervised the project. All authors discussed the manuscript.

Corresponding author

Correspondence to Peter Wahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bork, J., Zhang, Yh., Diekhöner, L. et al. A tunable two-impurity Kondo system in an atomic point contact. Nature Phys 7, 901–906 (2011). https://doi.org/10.1038/nphys2076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing