Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically tuned spin–orbit interaction in an InAs self-assembled quantum dot

A Corrigendum to this article was published on 28 December 2011

This article has been updated

Abstract

Electrical control over electron spin is a prerequisite for spintronics spin-based quantum information processing. In particular, control over the interaction between the orbital motion and the spin state of electrons would be valuable, because this interaction influences spin relaxation and dephasing. Electric fields have been used to tune the strength of the spin–orbit interaction in two-dimensional electron gases, but not, so far, in quantum dots. Here, we demonstrate that electrical gating can be used to vary the energy of the spin–orbit interaction in the range 50–150 µeV while maintaining the electron occupation of a single self-assembled InAs quantum dot. We determine the spin–orbit interaction energy by observing the splitting of Kondo effect features at high magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic evolution of system ground states.
Figure 2: Hybridization of the orbital states.
Figure 3: Action of the side-gate.
Figure 4: Electrical control of SOI.
Figure 5: Azimuthal B-field rotation.

Similar content being viewed by others

Change history

  • 22 November 2011

    In the version of this Letter originally published, in the discussion of Fig. 5c on page 514, the fitting function should have been Δ = A|cos(θ − θ0 ± π/2)| + B, and the offsets of θ0 should have been −30 ± 4° and −39 ± 5° for Vsg = −0.5 V and 1.0 V, respectively. These errors have been corrected in the HTML and PDF versions of the Letter.

References

  1. Datta, S. & Das, B. Electronic analog of the electro-optical modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  2. Rashba, E. & Efros, A. Orbital mechanisms of electron-spin manipulation by an electric field. Phys. Rev. Lett. 91, 126405 (2003).

    Article  CAS  Google Scholar 

  3. Golovach, V., Borhani, M. & Loss, D. Electric-dipole induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).

    Article  Google Scholar 

  4. Nowack, K., Koppens, F., Nazarov, Y. & Vandersypen, L. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  Google Scholar 

  5. Nadj-Perge, S., Frolov, S., Bakkers, E. & Kouwenhoven, L. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  CAS  Google Scholar 

  6. Studer, M., Salis, G., Ensslin, K., Driscoll, D. & Gossard, A. Gate-controlled spin–orbit interaction in a parabolic GaAs/AlGaAs quantum well. Phys. Rev. Lett. 103, 027201 (2009).

    Article  CAS  Google Scholar 

  7. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  CAS  Google Scholar 

  8. Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    Article  CAS  Google Scholar 

  9. Kunihashi, Y., Kohda, M. & Nitta, J. Enhancement of spin lifetime in gate-fitted InGaAs narrow wires. Phys. Rev. Lett. 102, 226601 (2009).

    Article  Google Scholar 

  10. Jung, M. et al. Lateral electron transport through single self-assembled InAs quantum dots. Appl. Phys. Lett. 86, 033106 (2005).

    Article  Google Scholar 

  11. Jung, M. et al. Shell structures in self-assembled InAs quantum dots probed by lateral electron tunneling structures. Appl. Phys. Lett. 87, 203109 (2005).

    Article  Google Scholar 

  12. Nakaoka, T., Kako, S., Tarucha, S. & Arakawa, Y. Coulomb blockade in a self-assembled GaN quantum dot. Appl. Phys. Lett. 90, 162109 (2007).

    Article  Google Scholar 

  13. Katsaros, G. et al. Hybrid superconductor–semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nature Nanotech. 5, 458–464 (2010).

    Article  CAS  Google Scholar 

  14. Igarashi, Y. et al. Spin-half Kondo effect in a single self-assembled InAs quantum dot with and without an applied magnetic field. Phys. Rev. B 76, 081303 (2007).

    Article  Google Scholar 

  15. Kanai, Y. et al. Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction. Phys. Rev. B 82, 054512 (2010).

    Article  Google Scholar 

  16. Takahashi, S. et al. Large anisotropy of spin–orbit interaction in a single InAs self-assembled quantum dot. Phys. Rev. Lett. 104, 246801 (2010).

    Article  CAS  Google Scholar 

  17. Kouwenhoven, L. et al. Single-Electron Tunneling and Mesoscopic Devices (Nato-Series Kluwer, 1997).

    Google Scholar 

  18. Csonka, S., Hofstetter, L., Freitag, F., Oberholzer, S. & Schönenberger, C. Giant fluctuations and gate control of the g-factor in InAs nanowire quantum dots. Nano Lett. 8, 3932–3935 (2008).

    Article  CAS  Google Scholar 

  19. Nilsson, H. A. et al. Giant level-dependent g factors in InSb nanowire quantum dots. Nano Lett. 9, 3151–3156 (2009).

    Article  CAS  Google Scholar 

  20. Nilsson, H. A. et al. Correlation-induced conductance suppression at level degeneracy in a quantum dot. Phys. Rev. Lett. 104, 186804 (2010).

    Article  CAS  Google Scholar 

  21. Meir, Y., Wingreen, N. & Lee, P. Low-temperature transport through a quantum dot: the anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–2604 (1993).

    Article  CAS  Google Scholar 

  22. Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. & Loss, D. Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).

    Article  CAS  Google Scholar 

  23. Sasaki, S., Amaha, S., Asakawa, N., Eto, M. & Tarucha, S. Enhanced Kondo effect via tuned orbital degeneracy in a spin 1/2 artificial atom. Phys. Rev. Lett. 93, 017205 (2004).

    Article  Google Scholar 

  24. Ng, T. K. & Lee, P. A. On-site Coulomb repulsion and resonant tunneling. Phys. Rev. Lett. 61, 1768–1771 (1998).

    Article  Google Scholar 

  25. Glazman, L. & Raikh, M. E. Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett. 47, 452–455 (1988).

    Google Scholar 

  26. Goldhaber-Gordon, D. et al. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 81, 5225–5228 (1998).

    Article  CAS  Google Scholar 

  27. Destefani, C., Ulloa, S. E. & Marques, G. Spin–orbit coupling and intrinsic spin mixing in quantum dots. Phys. Rev. B 69, 125302 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with R. Sakano. This work was supported by a Grant-in-Aid for Research S (no. 19104007) and A (no. 21244046), MEXT KAKENHI ‘Quantum Cybernetics’ project, the Strategic International Cooperative Program, DFG-JST joint research project (‘Topological Electronics’), the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), and the Special Coordination Funds for Promoting Science and Technology, MEXT (Japan). S. Tarucha acknowledges support from an IARPA grant (‘Multi-Qubit Coherent Operations’) through Harvard. S. Takahashi and Y.K. are supported by JSPS Research Fellowships for Young Scientists.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and R.S.D. performed measurements, analysed the results and wrote the manuscript. S. Takahashi contributed to interpretation of the data. K.Y. contributed to device fabrication. K.S. and K.H. grew the self-assembled InAs quantum dot samples. Y.T. performed simulations of the system, which were crucial to interpretation of data. A.O. and S. Tarucha directed the research. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to R. S. Deacon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 16831 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanai, Y., Deacon, R., Takahashi, S. et al. Electrically tuned spin–orbit interaction in an InAs self-assembled quantum dot. Nature Nanotech 6, 511–516 (2011). https://doi.org/10.1038/nnano.2011.103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing