Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum

Abstract

Of the endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG) have received the most study. A functional interaction between these molecules has never been described. Using mouse brain slices, we found that stimulation of metabotropic glutamate 5 receptors by 3,5-dihydroxyphenylglycine (DHPG) depressed inhibitory transmission in the striatum through selective involvement of 2-AG metabolism and stimulation of presynaptic CB1 receptors. Elevation of AEA concentrations by pharmacological or genetic inhibition of AEA degradation reduced the levels, metabolism and physiological effects of 2-AG. Exogenous AEA and the stable AEA analog methanandamide inhibited basal and DHPG-stimulated 2-AG production, confirming that AEA is responsible for the downregulation of the other eCB. AEA is an endovanilloid substance, and the stimulation of transient receptor potential vanilloid 1 (TRPV1) channels mimicked the effects of endogenous AEA on 2-AG metabolism through a previously unknown glutathione-dependent pathway. Consistently, the interaction between AEA and 2-AG was lost after pharmacological and genetic inactivation of TRPV1 channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of mGlu receptor stimulation on glutamate and GABA transmission recorded from striatal spiny neurons.
Figure 2: eCB system after DHPG in striatal slices.
Figure 3: Interaction of AEA metabolism with 2-AG metabolism and 2-AG's physiological effects.
Figure 4: GABA transmission, mGlu receptor modulation and endocannabinoid metabolism in striatal slices of FAAH knockout and wild-type mice.
Figure 5: Role of Met-AEA and vanilloid receptors in striatal DHPG effects.
Figure 6: GABA transmission, mGlu receptor modulation and endocannabinoid metabolism in striatal slices of TRPV1 knockout mice.
Figure 7: Glutathione levels control 2-AG levels and its physiological effects.

Similar content being viewed by others

References

  1. Piomelli, D. The molecular logic of endocannabinoid signaling. Nat. Rev. Neurosci. 4, 873–884 (2003).

    Article  CAS  Google Scholar 

  2. Chevaleyre, V., Takahashi, K.A. & Castello, P.E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76 (2006).

    Article  CAS  Google Scholar 

  3. Freund, T.F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017–1066 (2003).

    Article  CAS  Google Scholar 

  4. Barinaga, M. How cannabinoids work in the brain. Science 291, 2530–2531 (2001).

    Article  CAS  Google Scholar 

  5. Kreitzer, A.C. & Regehr, W.G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001).

    Article  CAS  Google Scholar 

  6. Wilson, R.I. & Nicoll, R.A. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  Google Scholar 

  7. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. & Kano, M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31, 463–475 (2001).

    Article  CAS  Google Scholar 

  8. Melis, M. et al. Prefrontal cortex stimulation induces 2-arachidonoyl glycerol–mediated suppression of excitation in dopamine neurons. J. Neurosci. 24, 10707–10715 (2004).

    Article  CAS  Google Scholar 

  9. Gerdeman, G.L., Ronesi, J. & Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451 (2002).

    Article  CAS  Google Scholar 

  10. Uchigashima, M. et al. Subcellular arrangement of molecules for 2-arachidonoyl glycerol–mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J. Neurosci. 27, 3663–3676 (2007).

    Article  CAS  Google Scholar 

  11. Soler-Llavina, G.J. & Sabatini, B.L. Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat. Neurosci. 9, 798–806 (2006).

    Article  CAS  Google Scholar 

  12. Ohno-Shosaku, T., Shosaku, J., Tsubokawa, H. & Kano, M. Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. Eur. J. Neurosci. 15, 953–961 (2002).

    Article  Google Scholar 

  13. Rouach, N. & Nicoll, R.A. Endocannabinoids contribute to short-term, but not long-term, mGluR-induced depression in the hippocampus. Eur. J. Neurosci. 18, 1017–1020 (2003).

    Article  Google Scholar 

  14. Kushmerick, C. et al. Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mGluR activation at a calyx synapse. J. Neurosci. 24, 5955–5965 (2004).

    Article  CAS  Google Scholar 

  15. Kreitzer, A.C. & Malenka, R.C. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J. Neurosci. 25, 10537–10545 (2005).

    Article  CAS  Google Scholar 

  16. Centonze, D. et al. Abnormal sensitivity to cannabinoid receptor stimulation might contribute to altered gamma-aminobutyric acid transmission in the striatum of R6/2 Huntington's disease mice. Biol. Psychiatry 57, 1583–1589 (2005).

    Article  CAS  Google Scholar 

  17. Sarnataro, D. et al. Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cancer cells. FEBS Lett. 579, 6343–6349 (2005).

    Article  CAS  Google Scholar 

  18. Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid knockout in the brain. J. Cell Biol. 163, 463–468 (2003).

    Article  CAS  Google Scholar 

  19. Dinh, T.P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  Google Scholar 

  20. Hermann, A., Kaczocha, M. & Deutsch, D.G. 2-Arachidonoylglycerol (2-AG) membrane transport: history and outlook. AAPS J. 8, E409–412 (2006).

    Article  Google Scholar 

  21. Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. & Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279, 5298–5305 (2004).

    Article  CAS  Google Scholar 

  22. Glaser, S.T., Kaczocha, M. & Deutsch, D.G. Anandamide transport: a critical review. Life Sci. 77, 1584–1604 (2005).

    Article  CAS  Google Scholar 

  23. Bari, M., Battista, N., Fezza, F., Gasperi, V. & Maccarrone, M. New insights into endocannabinoid degradation and its therapeutic potential. Mini Rev. Med. Chem. 6, 275–268 (2006).

    Article  Google Scholar 

  24. McKinney, M.K. & Cravatt, B.F. Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem. 74, 411–432 (2005).

    Article  CAS  Google Scholar 

  25. Bisogno, T. et al. Development of the first potent and specific inhibitors of endocannabinoid biosynthesis. Biochim. Biophys. Acta 1761, 205–212 (2006).

    Article  CAS  Google Scholar 

  26. Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).

    Article  CAS  Google Scholar 

  27. Cravatt, B.F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signalling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  Google Scholar 

  28. Starowicz, K., Nigam, S. & Di Marzo, V. Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther. 114, 13–33 (2007).

    Article  CAS  Google Scholar 

  29. Cristino, L. et al. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139, 1405–1415 (2006).

    Article  CAS  Google Scholar 

  30. Evans, R.M., Scott, R.H. & Ross, R.A. Multiple actions of anandamide on neonatal rat cultured sensory neurones. Br. J. Pharmacol. 141, 1223–1233 (2004).

    Article  CAS  Google Scholar 

  31. Sagara, Y. & Schubert, D. The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J. Neurosci. 18, 6662–6671 (1998).

    Article  CAS  Google Scholar 

  32. Jhaveri, M.D., Richardson, D., Kendall, D.A., Barrett, D.A. & Chapman, V. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J. Neurosci. 26, 13318–13327 (2006).

    Article  CAS  Google Scholar 

  33. Maione, S. et al. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J. Pharmacol. Exp. Ther. 316, 969–982 (2006).

    Article  CAS  Google Scholar 

  34. de Lago, E. et al. Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels. Biochem. Pharmacol. 70, 446–452 (2005).

    Article  CAS  Google Scholar 

  35. Kim, J. & Alger, B.E. Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nat. Neurosci. 7, 697–698 (2004).

    Article  CAS  Google Scholar 

  36. Makara, J.K. et al. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat. Neurosci. 8, 1139–1141 (2005).

    Article  CAS  Google Scholar 

  37. Melis, M. et al. Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol. Dis. 24, 15–27 (2006).

    Article  CAS  Google Scholar 

  38. Szabo, B. et al. Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J. Physiol. (Lond.) 577, 263–280 (2006).

    Article  CAS  Google Scholar 

  39. Valenti, M. et al. Differential diurnal variations of anandamide and 2-arachidonoyl-glycerol levels in rat brain. Cell. Mol. Life Sci. 61, 945–950 (2004).

    Article  CAS  Google Scholar 

  40. Sugiura, T., Kobayashi, Y., Oka, S. & Waku, K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot. Essent. Fatty Acids 66, 173–192 (2002).

    Article  CAS  Google Scholar 

  41. Bisogno, T. et al. Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem. Biophys. Res. Commun. 256, 377–380 (1999).

    Article  CAS  Google Scholar 

  42. Di Marzo, V., Hill, M.P., Bisogno, T., Crossman, A.R. & Brotchie, J.M. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J. 14, 1432–1438 (2000).

    CAS  PubMed  Google Scholar 

  43. Guo, Y. et al. N-acylphosphatidylethanolamine–hydrolyzing phospholipase D is an important determinant of uterine anandamide levels during implantation. J. Biol. Chem. 280, 23429–23432 (2005).

    Article  CAS  Google Scholar 

  44. Jung, K.M. et al. Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors. Mol. Pharmacol. 68, 1196–1202 (2005).

    Article  CAS  Google Scholar 

  45. Gubellini, P. et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J. Neurosci. 22, 6900–6907 (2002).

    Article  CAS  Google Scholar 

  46. Pisani, A., Bonsi, P., Centonze, D., Bernardi, G. & Calabresi, P. Functional coexpression of excitatory mGluR1 and mGluR5 on striatal cholinergic interneurons. Neuropharmacology 40, 460–463 (2001).

    Article  CAS  Google Scholar 

  47. Pellmar, T.C., Roney, D. & Lepinski, D.L. Role of glutathione in repair of free radical damage in hippocampus in vitro. Brain Res. 583, 194–200 (1992).

    Article  CAS  Google Scholar 

  48. Cartoni, A., Margonelli, A., Angelini, G., Finazzi Agrò, A. & Maccarrone, M. Simplified chemical and radiochemical synthesis of 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors. Tetrahedr. Lett. 45, 2723–2726 (2004).

    Article  CAS  Google Scholar 

  49. Fezza, F., Gasperi, V., Mazzei, C. & Maccarrone, M. Radiochromatographic assay of N-acyl-phosphatidylethanolamine–specific phospholipase D (NAPE-PLD) activity. Anal. Biochem. 339, 113–120 (2005).

    Article  CAS  Google Scholar 

  50. Wang, Y. et al. Simultaneous measurement of anandamide and 2-arachidonoylglycerol by polymixin B–selective adsorption and subsequent high-performance liquid chromatography analysis: increase in endogenous cannabinoids in the sera of patients with endotoxic shock. Anal. Biochem. 294, 73–82 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to P. Spagnuolo for her valuable help with the biochemical assays. This investigation was supported by Italian National Ministero dell'Università e della Ricerca to M.M. and to D.C. (FIRB 2006), by Italian National Ministero della Salute to A.F.A. (grant 2005) and to D.C. (grants 2005 and 2006), by Fondazione TERCAS (Research Programs 2004 and 2005) to M.M., and by Agenzia Spaziale Italiana (Disturbi del Controllo Motorio e Cardiorespiratorio and From Molecules to Man projects 2006) to A.F.-A., G.B. and M.M.

Author information

Authors and Affiliations

Authors

Contributions

M.M. planned the biochemical experiments, coordinated the study and revised the draft manuscript. S.R. carried out the electrophysiological recordings, analyzed the data and prepared the figures. M.B., F.F. and V.G. performed the biochemical experiments and analyzed the data. V.D.C., C.P. and A.M. carried out electrophysiological recordings, G.B. and A.F.-A. participated in the study design and revised the draft manuscript, B.F.C. participated in the study design and provided the FAAH knockout mice, and D.C. planned the electrophysiological experiments, coordinated the study and drafted the manuscript. All authors contributed to the discussion and interpretation of the results.

Corresponding authors

Correspondence to Mauro Maccarrone or Diego Centonze.

Supplementary information

Supplementary Text and Figures

Supplementary Fig. 1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccarrone, M., Rossi, S., Bari, M. et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci 11, 152–159 (2008). https://doi.org/10.1038/nn2042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing