Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries

Subjects

Abstract

Electrochemical energy storage is one of the main societal challenges of this century. The performances of classical lithium-ion technology based on liquid electrolytes have made great advances in the past two decades, but the intrinsic instability of liquid electrolytes results in safety issues. Solid polymer electrolytes would be a perfect solution to those safety issues, miniaturization and enhancement of energy density. However, as in liquids, the fraction of charge carried by lithium ions is small (<20%), limiting the power performances. Solid polymer electrolytes operate at 80 °C, resulting in poor mechanical properties and a limited electrochemical stability window. Here we describe a multifunctional single-ion polymer electrolyte based on polyanionic block copolymers comprising polystyrene segments. It overcomes most of the above limitations, with a lithium-ion transport number close to unity, excellent mechanical properties and an electrochemical stability window spanning 5 V versus Li+/Li. A prototype battery using this polyelectrolyte outperforms a conventional battery based on a polymer electrolyte.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Conductivity performances.
Figure 3: Mechanical performances.
Figure 4: Electrochemical stability window.
Figure 5: Cyclability.
Figure 6: Discharged capacity according to the discharge rate compared at 60 and 80 °C.

Similar content being viewed by others

References

  1. Tollefson, J. Car industry: Charging up the future. Nature 456, 436–440 (2008).

    Article  CAS  Google Scholar 

  2. Cheng, F., Liang, J., Tao, Z. & Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011).

    Article  CAS  Google Scholar 

  3. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  4. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  5. Murata, K., Izuchi, S. & Yoshihisa, Y. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 45, 1501–1508 (2000).

    Article  CAS  Google Scholar 

  6. Bruce, P. G. & Vincent, C. A. Polymer electrolytes. J. Chem. Soc. Faraday Trans. 89, 3187–3203 (1993).

    Article  CAS  Google Scholar 

  7. Chazalviel, J-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990).

    Article  CAS  Google Scholar 

  8. Ryu, S. W. et al. Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J. Electrochem. Soc. 152, A158–A163 (2005).

    Article  CAS  Google Scholar 

  9. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  10. Hammami, A., Raymond, N. & Armand, M. Lithium-ion batteries: Runaway risk of forming toxic compounds. Nature 424, 635–636 (2003).

    Article  CAS  Google Scholar 

  11. Marzantowicz, M., Dygas, J. R., Krok, F., Florjańczyk, Z. & Zygadło-Monikowska, E. Influence of crystalline complexes on electrical properties of PEO:LiTFSI electrolyte. Electrochim. Acta 53, 1518–1526 (2007).

    Article  CAS  Google Scholar 

  12. Vaia, R. A., Vasudevan, S., Krawiec, W., Scanlon, L. G. & Giannelis, E. P. New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv. Mater. 7, 154–156 (1995).

    Article  CAS  Google Scholar 

  13. Wong, S. & Zax, D. B. What do NMR linewidths tell us? Dynamics of alkali cations in a PEO-based nanocomposite polymer electrolyte. Electrochim. Acta 42, 3513–3518 (1997).

    Article  CAS  Google Scholar 

  14. Bujdàk, J., Hackett, E. & Giannelis, E. P. Effect of layer charge on the intercalation of poly(ethylene oxide) in layered silicates: Implications on nanocomposite polymer electrolytes. Chem. Mater. 12, 2168–2174 (2000).

    Article  Google Scholar 

  15. Capiglia, C., Mustarelli, P., Quartarone, E., Tomasi, C. & Magistris, A. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ion. 118, 73–79 (1999).

    Article  CAS  Google Scholar 

  16. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  CAS  Google Scholar 

  17. Forsyth, M. et al. The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ion. 147, 203–211 (2002).

    Article  CAS  Google Scholar 

  18. Manuel Stephan, A. Review on gel polymer electrolytes for lithium batteries. Eur. Polymer J. 42, 21–42 (2006).

    Article  CAS  Google Scholar 

  19. Dollé, M., Sannier, L., Beaudoin, B., Trentin, M. & Tarascon, J-M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid-State Lett. 5, A286–A289 (2002).

    Article  Google Scholar 

  20. Rosso, M. et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 51, 5334–5340 (2006).

    Article  CAS  Google Scholar 

  21. Singh, M. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40, 4578–4585 (2007).

    Article  CAS  Google Scholar 

  22. Panday, A. et al. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42, 4632–463 (2009).

    Article  CAS  Google Scholar 

  23. Soo, P. P. et al. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32–37 (1999).

    Article  CAS  Google Scholar 

  24. Trapa, P. E., Huang, B., Won, Y-Y., Sadoway, D. R. & Mayes, A. M. Block copolymer electrolytes synthesized by atom transfer radical polymerization for solid-state, thin-film lithium batteries. Electrochem. Solid-State Lett. 5, A85–A88 (2002).

    Article  CAS  Google Scholar 

  25. Trapa, P. E. et al. Rubbery graft copolymer electrolytes for solid-state, thin-film lithium batteries. J. Electrochem. Soc. 152, A1–A5 (2005).

    Article  CAS  Google Scholar 

  26. Sadoway, D. R. Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J. Power Sources 129, 1–3 (2004).

    Article  CAS  Google Scholar 

  27. Niitani, T. et al. Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem. Solid-State Lett. 8, A385–A388 (2005).

    Article  CAS  Google Scholar 

  28. Hayamizu, K., Akiba, E., Bando, T. & Aihara, Y. 1H, 7Li, and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n = 3–50) doped with LiN(SO2CF3)2 . J. Chem. Phys. 117, 5929–5939 (2002).

    Article  CAS  Google Scholar 

  29. Mayes, A., Sadoway, D. R. & Bannerjee, P. Block copolymer electrolyte. Patent WO 00/05774 (2000).

  30. Sadoway, D. R. et al. Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J. Power Sources 97–98, 621–623 (2001).

    Article  Google Scholar 

  31. Hu, Q. et al. Graft copolymer-based lithium-ion battery for high-temperature operation. J. Power Sources 196, 5604–5610 (2011).

    Article  CAS  Google Scholar 

  32. Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).

    Article  CAS  Google Scholar 

  33. Abetz, V. & Simon, P. F. W. Phase behaviour and morphologies of block copolymers. Adv. Polym. Sci. 189, 125–212 (2005).

    Article  CAS  Google Scholar 

  34. MacDonald, J. R. Binary electrolyte small-signal frequency response. Electroanal. Chem. Int. Electrochem. 53, 1–55 (1974).

    Article  CAS  Google Scholar 

  35. Wu, D. Y., Meure, S. & Solomon, D. Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008).

    Article  CAS  Google Scholar 

  36. Siqueira, L. J. A. & Ribeiro, M. C. C. Molecular dynamics simulation of the polymer electrolyte poly(ethyleneoxide)/LiClO4. I. Structural properties. J. Chem. Phys. 122, 194911 (2005).

    Article  Google Scholar 

  37. Armand, M. Polymer solid electrolytes—an overview. Solid State Ion. 9–10, 745–754 (1983).

    Article  Google Scholar 

  38. Croce, F., Sacchetti, S. & Scrosati, B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 162, 685–689 (2006).

    Article  CAS  Google Scholar 

  39. Wang, L., Li, X. & Yang, W. Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries. Electrochim. Acta 55, 1895–1899 (2010).

    Article  CAS  Google Scholar 

  40. Kaneko, F. et al. Capacity fading mechanism in all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolytes. Adv. Funct. Mater. 19, 918–925 (2009).

    Article  CAS  Google Scholar 

  41. Meziane, R., Bonnet, J-P., Courty, M., Djellab, K. & Armand, M. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011).

    Article  CAS  Google Scholar 

  42. Bloch, E., Phan, T., Bertin, D., Llewellyn, P. & Hornebecq, V. Direct synthesis of mesoporous silica presenting large and tunable pores using BAB triblock copolymers: Influence of each copolymer block on the porous structure. Micropor. Mesopor. Mater. 112, 612–620 (2008).

    Article  CAS  Google Scholar 

  43. Girod, M., Phan, T. N. T. & Charles, L. Microstructural study of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer (PEO-b-PS) by electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 19, 1163–1175 (2008).

    Article  CAS  Google Scholar 

  44. Gigmes, D. et al. Intermolecular radical 1,2-addition of the BlocBuilder MA alkoxyamine onto activated olefins: A versatile tool for the synthesis of complex macromolecular architecture. Polym. Chem. 2, 1624–1631 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was undertaken within the French ANR programme STOCK-E under the contract COPOLIBAT, no. ANR-09-STOCK-E-03.

Author information

Authors and Affiliations

Authors

Contributions

R.B. conceived and designed the material. R.M., L.L., J-P.B. and M.A. performed the synthesis and characterization of the anionic monomers. S.M., L.L., T.N.T.P., D.G. and D.B. performed the synthesis and macromolecular characterization of the polyanionic block copolymers. S.M. and R.D. carried out the thermal analysis. A.A., D.D., R.D. and. R.B. performed the sample and battery preparation, the conductivity and mechanical measurements and electrochemical characterizations. R.B. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Renaud Bouchet or Abdelmaula Aboulaich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchet, R., Maria, S., Meziane, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Mater 12, 452–457 (2013). https://doi.org/10.1038/nmat3602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing