Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flux crystal growth and thermal stabilities of LiV2O4

Abstract

The spinel oxide LiV2O4 is a interesting compound that shows heavy fermion behaviour despite its d-electron system. The large quasiparticle specific heat coefficient (γ value) is close to those of other heavy fermion systems in f-electron Zintl compounds. The mechanism of such heavy fermion behaviour in LiV2O4 has not been resolved, owing to the lack of high-quality single crystals required for experiments. Here we present a crystal-growth technique for LiV2O4 using a solvent system that acts effectively for mixed-valence vanadium (V3+ and V4+) oxides. The grown crystals have a well-developed octahedral form bounded by {111} faces, with high crystallographic quality and maximum size of almost 1.0×1.0×1.0 mm. The crystals have stoichiometric composition and show heavy fermion behaviour with an extremely large γ value of 460 mJ mol−1 K−2. Crystals of LiV2O4 are very sensitive to air and moisture, but are stable up to 1,020 C under vacuum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of LiV2O4 solubility in LiCl-Li2MoO4-LiBO2 flux system.
Figure 2: Scanning electron micrograph of grown LiV2O4 single crystals with 1.0x1.0x1.0 mm size in the cross edge direction.
Figure 3: Physical properties of grown LiV2O4 crystals.
Figure 4: Lithium-ion channels in LiV2O4 structure.
Figure 5: Temperature dependence of the thermal weight change of LiV2O4 crystals under air.

Similar content being viewed by others

References

  1. Moshopoulou, E. G. Superconductivity in the spinel compound LiTi2O4 . J. Am. Ceram. Soc. 82, 3317-3320 (1999).

    Article  Google Scholar 

  2. Akimoto, J., Takahashi, Y., Gotoh, Y. & Mizuta, S. Single crystal growth of the spinel-type LiMn2O4 . J. Cryst. Growth 229, 405-408 (2001).

    Article  Google Scholar 

  3. Kumagai, N. & Komaba, S. (eds) Materials Chemistry in Lithium Batteries (Research Signpost, Kerala, India, 2002).

  4. Lee, S. -H. et al. Orbital and spin chains in ZnV2O4 . Phys. Rev. Lett. 93, 156407 (2004).

    Article  Google Scholar 

  5. Isobe, M. & Ueda, Y. Observation of phase transition from metal to spin-singlet insulator in MgTi2O4 withS=1/2 pyrochlore lattice. J. Phys. Soc. Jpn 71, 1848-1851 (2002).

    Article  Google Scholar 

  6. Matsuno, K. et al. Charge ordering in the geometrically frustrated spinel AlV2O4 . J. Phys. Soc. Jpn 70, 1456-1459 (2001).

    Article  Google Scholar 

  7. Johnston, D. C. Superconducting and normal state properties of Li1+xTi2−xO4 spinel compounds. 1. Preparation, crystallography, superconducting properties, electrical-resistivity, dielectric behaviour, and magnetic-susceptibility. J. Low Temp. Phys. 25, 145-175 (1976).

    Article  Google Scholar 

  8. Kondo, S. et al. LiV2O4: A heavy fermion transition metal oxide. Phys. Rev. Lett. 78, 3729-3732 (1997).

    Article  Google Scholar 

  9. Kondo, S., Johnston, D. C. & Miller, L. L. Synthesis, characterization, and magnetic susceptibility of the heavy fermion transition-metal oxide LiV2O4 . Phys. Rev. B 59, 2609-2626 (1999).

    Article  Google Scholar 

  10. Takagi, H. et al. Transport properties of metallic LiV2O4 single crystals - heavy mass Fermi liquid behaviour. Mater. Sci. Eng. B 63, 147-150 (1999).

    Article  Google Scholar 

  11. Urano, C. et al. LiV2O4 spinel as a heavy-mass Fermi liquid: anomalous transport and role of geometrical frustration. Phys. Rev. Lett. 85, 1052-1055 (2000).

    Article  Google Scholar 

  12. Steglich, F. et al. Recent trends in heavy fermion physics. Physica B 329, 441-445 (2003).

    Article  Google Scholar 

  13. Rogers, D. B., Gillson, J. L. & Gier, T. E. Hydrothermal crystal growth and electrical conductivity of the spinel LiV2O4 . Solid State Commun. 5, 263-265 (1967).

    Article  Google Scholar 

  14. Elwell, D. & Scheel, H. J. Crystal Growth from High-Temperature Solutions (Academic, London, 1975).

    Google Scholar 

  15. Chernov, A. A. Modern Crystallography III (Springer, Berlin, 1984).

    Book  Google Scholar 

  16. Khakulov, Z. L., Shurdumov, G. K. & Mokhosoev, M. V. LiCl-LiBO2-Li2MoO4 system. Russ. J. Inorg. Chem. 31, 719-722 (1986).

    Google Scholar 

  17. Barinova, A. V., Rastsvetaeva, R. K., Nekrasov, Y. V. & Pushcharovskii, D. Y. Crystal structure of Li2MoO4 . Dokl. Chem. 376, 16-19 (2001).

    Article  Google Scholar 

  18. Takei, H. et al. Growth and properties of Li-deficient lithium vanadium dioxide single-crystals. Mater. Res. Soc. Bull. 27, 555-562 (1992).

    Article  Google Scholar 

  19. Tian, W. et al. Single crystal growth and characterization of nearly stoichiometric LiVO2 . Mater. Res. Soc. Bull. 39, 1319-1328 (2004).

    Article  Google Scholar 

  20. Kirfel, A., Will, G. & Stewart, R. F. The chemical bonding in lithium metaborate, LiBO2-charge-densities and electrostatic properties. Acta Crystallogr. B 39, 175-185 (1983).

    Article  Google Scholar 

  21. Chryssikos, G. D., Kamitsos, E. I., Bitsis, M. S. & Patsis, A. P. Chemical relaxations at the glass-transition of a lithium conducting glass. J. Non-Cryst. Solids 131, 1068-1071 (1991).

    Article  Google Scholar 

  22. Ueda, Y., Fujiwara, N. & Yasuoka, H. Magnetic and structural transitions in (LixZn1−x)V2O4 with the spinel structure. J. Phys. Soc. Jpn 66, 778-783 (1997).

    Article  Google Scholar 

  23. Chmaissem, O., Jorgensen, J. D., Kondo, S. & Johnston, D. C. Structure and thermal expansion of LiV2O4: correlation between structure and heavy fermion behaviour. Phys. Rev. Lett. 79, 4866-4869 (1997).

    Article  Google Scholar 

  24. Matsushita, Y., Yamaura, J. & Ueda, Y. Lithium divanadate spinel, LiV2O4 . Acta Crystallogr. E 61, i137-i139 (2005).

    Article  Google Scholar 

  25. Nekrasov, I. A. et al. Orbital state and magnetic properties of LiV2O4 . Phys. Rev. B 67, 085111 (2003).

    Article  Google Scholar 

  26. Wadsley, A. D. Crystal chemistry of non-stoichiometric pentavalent vanadium oxides: crystal structure of Li1+xV3O8 . Acta Crystallogr. 10, 261-267 (1957).

    Article  Google Scholar 

  27. McMurdie, L. (ed.) Phase Diagram for Ceramists Vol. III, 49 (The American Ceramic Society, Westerville, 1975).

  28. Koda, A. et al. Staggered magnetism in LiV2O4 at low temperatures probed by the muon Knight shift. J. Phys. C 17, L257-L264 (2005).

    Google Scholar 

  29. Gupta, R. R. (ed.) Diamagnetic Susceptibility, Landolt-Börnstein - Group II Molecules and Radicals Vol. 16 (Springer, Berlin, 1986).

Download references

Acknowledgements

The authors thank M. Koike for help in the early stage of this work, Z. Hiroi for specific heat measurements, T. Kitazawa for his help in the crystal-growth experiments, F. Sakai for the chemical analyses, J. Yamaura for single-crystal X-ray diffraction measurements using a CCD diffractometer and G. Heale for critical reading. This work is partly supported by Grants-in-Aid for Scientific Research (Nos 407 and 758) and for Creative Scientific Research (No. 13NP0201) from the Ministry of Education, Culture, Sports, Science, and Technology. We also gratefully acknowledge Komatsu Ltd. Co. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshitaka Matsushita or Yutaka Ueda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushita, Y., Ueda, H. & Ueda, Y. Flux crystal growth and thermal stabilities of LiV2O4. Nature Mater 4, 845–850 (2005). https://doi.org/10.1038/nmat1499

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing