Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Supramolecular barrels from amphiphilic rigid–flexible macrocycles

An Erratum to this article was published on 26 April 2005

Abstract

Precise control of supramolecular objects requires the rational design of molecular components, because the information determining their specific assembly should be encoded in their molecular architecture1,2,3,4. In this context, diverse self-assembling molecules including liquid crystals5, dendrimers6, block copolymers7, hydrogen-bonded complexes8 and rigid macrocycles9 are being created as a means of manipulating supramolecular structure. Incorporation of a stiff rod-like building block into an amphiphilic molecular architecture leads to another class of self-assembling molecules10. Aggregation of rod building blocks can generate various nanoscale objects including bundles11,12, ribbons13, tubules14,15 and vesicles16, depending on the molecular structure and/or the presence of a selective solvent. We present here an unusual example of supramolecular barrels in the solid and in aqueous solution, based on the self-assembly of amphiphilic rigid–flexible macrocycles driven by non-covalent interactions. Preliminary experiments show that these amphiphilic macrocycles are membrane-active. The amphiphilic macrocycles might thus lead to an excellent model system for exploring biological processes in supramolecular materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of a rigid–flexible macrocycle.
Figure 2: Structural data of rigid–flexible macrocycles.
Figure 3: Supramolecular architectures from self-assembly of rigid–flexible macrocycles.
Figure 4: TEM image of barrel-like tubular structures in an aqueous solution.

Similar content being viewed by others

References

  1. Lehn, J.-M. Supramolecular chemistry and self-assembly special feature. Toward complex matter: supramolecular chemistry and self-organization. Proc. Natl Acad. Sci. USA 99, 4763–4768 (2002).

    Article  CAS  Google Scholar 

  2. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  3. Sarikaya, M., Tamerler, C., Jen, A. K.-Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  4. Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Porosity of core–shell nanoparticles. J. Mater. Chem. 13, 2661–2666 (2004).

    Article  Google Scholar 

  5. Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).

    Article  CAS  Google Scholar 

  6. Percec V. et al. Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430, 764–768 (2004).

    Article  CAS  Google Scholar 

  7. Föster, S. & Plantenberg, T. From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Edn Engl. 41, 688–714 (2002).

    Article  Google Scholar 

  8. Hirschberg, J. H. K. et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 407, 167–170 (2000).

    Article  CAS  Google Scholar 

  9. Zhao, D. & Moore, J. S. Shape-persistent arylene ethynyene macrocycles: syntheses and supramolecular chemistry. Chem. Commun. 7, 807–818 (2003).

    Article  Google Scholar 

  10. Lee, M., Cho, B.-K. & Zin, W.-C. Supramolecular structures from rod–coil block copolymers. Chem. Rev. 101, 3869–3892 (2001).

    Article  CAS  Google Scholar 

  11. Stupp, S. I. et al. Supramolecular materials: self-organized nanostructures. Science 276, 384–389 (1997).

    Article  CAS  Google Scholar 

  12. Das, G. et al. β-Fibrillogenesis from rigid-rod β-barrels:hierarchical preorganization beyond microns. Angew. Chem. Int. Edn 40, 4657–4661 (2001).

    Article  CAS  Google Scholar 

  13. Zubarev, E. R., Pralle, M. U., Sone, E. D. & Stupp, S. I. Self-assembly of dendron rod–coil molecules into nanoribbons. J. Am. Chem. Soc. 123, 4105–4106 (2001).

    Article  CAS  Google Scholar 

  14. Park, S., Lim, J. -H., Chung, S.-W. & Mirkin, C. A. Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348–351 (2004).

    Article  CAS  Google Scholar 

  15. Hill, J. P. et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481–1483 (2004).

    Article  CAS  Google Scholar 

  16. Vriezema, D. M. et al. Vesicles and polymerized vesicles from thiophene-containing rod–coil block copolymers. Angew. Chem. Int. Edn Engl. 42, 772–776 (2003).

    Article  CAS  Google Scholar 

  17. Lee, M., Jang, C. J. & Ryu, J.-H. Supramolecular reactor from self-assembly of rod-coil molecule in aqueous environment. J. Am. Chem. Soc. 126, 8082–8083 (2004).

    Article  CAS  Google Scholar 

  18. Fürstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Edn Engl. 39, 3012–3043 (2000).

    Article  Google Scholar 

  19. Schappacher, M. & Deffieux, A. α-Acetal-ω-bis(hydroxymethyl) heterodifunctional polystyrene: synthesis, characterization, and investigation of intramolecular end-to-end ring closure. Macromolecules 34, 5827–5832 (2001).

    Article  CAS  Google Scholar 

  20. Wang, H., You, W., Jiang, P., Yu, L. & Wang, H. H. Supramolecular self-assembly of conjugated diblock copolymers. Chem. Eur. J. 10, 986 (2004).

    Article  CAS  Google Scholar 

  21. Williams, D. R. M. & Fredrickson, G. H. Cylindrical micelles in rigid–flexible diblock copolymers. Macromolecules 25, 3561–3568 (1992).

    Article  CAS  Google Scholar 

  22. Lee, M., Cho, B.-K., Jang, Y.-G. & Zin, W.-C. Spontaneous organization of supramolecular rod-bundles into a body-centered tetragonal assembly in coil–rod–coil molecules J. Am. Chem. Soc. 122, 7449–7455 (2000).

    Article  CAS  Google Scholar 

  23. In, M., Aguerre-Chariol, O. & Zana, R. Closed-looped micelles in surfactant tetramer solutions. J. Phys. Chem. B 103, 7747–7750 (1999).

    Article  CAS  Google Scholar 

  24. Bong, D. T., Clark, T. D., Granja, J. R. & Ghadiri, M. R. Self-assembling organic nanotubes. Angew. Chem. Int. Edn Engl. 40, 988–1011 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Creative Research Initiative Program of the Korean Ministry of Science and Technology for financial support of this work and the Pohang Accelerator Laboratory for synchrotron radiation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myongsoo Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods, scheme S1, supplementary tables S1-S8 and supplementary figures S1-S11 (PDF 1818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, WY., Ahn, JH., Yoo, YS. et al. Supramolecular barrels from amphiphilic rigid–flexible macrocycles. Nature Mater 4, 399–402 (2005). https://doi.org/10.1038/nmat1373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing