Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Supramolecular assemblies and polymer recognition based on polygonal and pillar-shaped macrocycles “pillar[n]arenes”

Abstract

Macrocyclic compounds show highly symmetric structures, making them useful building blocks for the creation of various supramolecular assemblies. The properties of such supramolecular assemblies result from their shape, functionality, and structure. In 2008, we reported a new type of polygonal-shaped macrocycle termed “pillar[n]arenes”. In this Focus Review, based on their polygonal structures, versatile functionality, and host–guest behavior, I present various pillar[n]arene-based supramolecular assemblies that have been investigated over the last 10 years in our group. Based on the versatile functionalization of pillar[n]arenes, continuous and length-controllable discrete one-dimensional channels, two-dimensional sheets, and three-dimensional vesicles have been produced. Bulk-state complexations using liquid and crystalline pillar[n]arenes are also discussed. The functionalization of pillar[n]arenes is also useful for creating functionalized crystals, and such crystals have shown guest-responsive changes in color, state, and water contact angle, as well as serving as reaction media for the spontaneous polymerization of cyclic monomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric rotaxanes. Chem Rev. 2009;109:5974–6023.

    CAS  Google Scholar 

  2. Engeldinger E, Armspach D, Matt D. Capped cyclodextrins. Chem Rev. 2003;103:4147–74.

    CAS  PubMed  Google Scholar 

  3. Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114:10940–75.

    CAS  PubMed  Google Scholar 

  4. Wenz G, Han B-H, Müller A. Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev. 2006;106:782–817.

    CAS  Google Scholar 

  5. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–918.

    CAS  PubMed  Google Scholar 

  6. Pedersen CJ. Cyclic polyethers and their complexes with metal salts. J Am Chem Soc. 1967;89:7017–36.

    CAS  Google Scholar 

  7. Zheng B, Wang F, Dong S, Huang F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev. 2012;41:1621–36.

    CAS  PubMed  Google Scholar 

  8. Morohashi N, Narumi F, Iki N, Hattori T, Miyano S. Thiacalixarenes. Chem Rev. 2006;106:5291–316.

    CAS  PubMed  Google Scholar 

  9. Gutsche CD. Calixarenes. Cambridge: The Royal Society of Chemistry; 1989.

  10. Ikeda A, Shinkai S. Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem Rev. 1997;97:1713–34.

    CAS  PubMed  Google Scholar 

  11. Homden DM, Redshaw C. The use of calixarenes in metal-based catalysis. Chem Rev. 2008;108:5086–130.

    CAS  PubMed  Google Scholar 

  12. Freeman WA, Mock WL, Shih NY. Cucurbituril. J Am Chem Soc. 1981;103:7367–8.

    CAS  Google Scholar 

  13. Kim J, Jung I-S, Kim S-Y, Lee E, Kang J-K, Sakamoto S, et al. New cucurbituril homologues:  syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc. 2000;122:540–1.

    CAS  Google Scholar 

  14. Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res. 2003;36:621–30.

    CAS  PubMed  Google Scholar 

  15. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The cucurbit[n]uril family. Angew Chem Int Ed. 2005;44:4844–70.

    CAS  Google Scholar 

  16. Liu Z, Nalluri SKM, Stoddart JF. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev. 2017;46:2459–78.

    CAS  PubMed  Google Scholar 

  17. Laughrey Z, Gibb BC. Water-soluble, self-assembling container molecules: an update. Chem Soc Rev. 2011;40:363–86.

    CAS  PubMed  Google Scholar 

  18. Murray J, Kim K, Ogoshi T, Yao W, Gibb BC. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem Soc Rev. 2017;46:2479–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–7.

    CAS  Google Scholar 

  20. Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y. para-bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc. 2008;130:5022–3.

    CAS  PubMed  Google Scholar 

  21. Ogoshi T, Yamagishi TA, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev. 2016;116:7937–8002.

    CAS  Google Scholar 

  22. Ogoshi T, Aoki T, Kitajima K, Fujinami S, Yamagishi T, Nakamoto Y. Facile, rapid, and high-yield synthesis of pillar[5]arene from commercially available reagents and Its X-ray crystal structure. J Org Chem. 2011;76:328–31.

    CAS  PubMed  Google Scholar 

  23. Wilson CR, Chen EFW, Puckett AO, Hof F. Ethoxypillar[6]arene. Org Synth. 2022;99:125–38.

    CAS  Google Scholar 

  24. Fa S, Kakuta T, Yamagishi T-A, Ogoshi T. Conformation and planar chirality of pillar[n]arenes. Chem Lett. 2019;48:1278–87.

    CAS  Google Scholar 

  25. Ogoshi T, Masaki K, Shiga R, Kitajima K, Yamagishi TA. Planar-chiral macrocyclic host pillar[5]arene: no rotation of units and isolation of enantiomers by introducing bulky substituents. Org Lett. 2011;13:1264–6.

    CAS  PubMed  Google Scholar 

  26. Ogoshi T, Yamafuji D, Aoki T, Kitajima K, Yamagishi T, Hayashi Y, et al. High-yield diastereoselective synthesis of planar chiral [2]- and [3]rotaxanes constructed from per-ethylated pillar[5]arene and pyridinium derivatives. Chem Eur J. 2012;18:7493–500.

    CAS  PubMed  Google Scholar 

  27. Li C. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem Commun. 2014;50:12420–33.

    CAS  Google Scholar 

  28. Wang Y, Ping G, Li C. Efficient complexation between pillar[5]arenes and neutral guests: from host-guest chemistry to functional materials. Chem Commun. 2016;52:9858–72.

    CAS  Google Scholar 

  29. Shu X, Chen S, Li J, Chen Z, Weng L, Jia X, et al. Highly effective binding of neutral dinitriles by simple pillar[5]arenes. Chem Commun. 2012;48:296–9.

    Google Scholar 

  30. Li C, Han K, Li J, Zhang Y, Chen W, Yu Y, et al. Supramolecular polymers based on efficient pillar[5]arene—neutral guest motifs. Chem Eur J. 2013;19:1189–7.

    Google Scholar 

  31. Strutt NL, Zhang HC, Schneebeli ST, Stoddart JF. Functionalizing pillar[n]arenes. Acc Chem Res. 2014;47:2631–42.

    CAS  PubMed  Google Scholar 

  32. Strutt NL, Forgan RS, Spruell JM, Botros YY, Stoddart JF. Monofunctionalized pillar[5]arene as a host for alkanediamines. J Am Chem Soc. 2011;133:5668–71.

    CAS  PubMed  Google Scholar 

  33. Zhang ZB, Xia BY, Han CY, Yu YH, Huang FH. Syntheses of copillar[5]arenes by co-oligomerization of different monomers. Org Lett. 2010;12:3285–7.

    CAS  Google Scholar 

  34. Ogoshi T, Hashizume M, Yamagishi TA, Nakamoto Y. Synthesis, conformational and host-guest properties of water-soluble pillar[5]arene. Chem Commun. 2010;46:3708–10.

    CAS  Google Scholar 

  35. Guo M, Wang X, Zhan C, Demay-Drouhard P, Li W, Du K, et al. Rim-differentiated C5-symmetric tiara-pillar[5]arenes. J Am Chem Soc. 2018;140:74–7.

    CAS  Google Scholar 

  36. Hu X-B, Chen Z, Chen L, Zhang L, Hou J-L, Li Z-T. Pillar[n]arenes (n = 8–10) with two cavities: synthesis, structures and complexing properties. Chem Commun. 2012;48:10999–1001.

    CAS  Google Scholar 

  37. Ogoshi T, Demachi K, Kitajima K, Yamagishi T. Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. Chem Commun. 2011;47:7164–6.

    CAS  Google Scholar 

  38. Ogoshi T, Yamafuji D, Kotera D, Aoki T, Fujinami S, Yamagishi T. Clickable di- and tetrafunctionalized pillar[n]arenes (n = 5, 6) by oxidation-reduction of pillar[n]arene units. J Org Chem. 2012;77:11146–52.

    CAS  PubMed  Google Scholar 

  39. Yang J, Chi X, Li Z, Yu G, He J, Abliz Z, et al. A water-soluble pillar[10]arene: synthesis, pH-responsive host-guest complexation, and application in constructing a supra-amphiphile. Org Chem Front. 2014;1:630–3.

    CAS  Google Scholar 

  40. Li ZT, Yang J, Yu GC, He JM, Abliz Z, Huang FH. Synthesis of a water-soluble pillar[9]arene and its pH-responsive binding to paraquat. Chem Commun. 2014;50:2841–3.

    CAS  Google Scholar 

  41. Li ZT, Yang J, Yu GC, He JM, Abliz Z, Huang FH. Water-soluble pillar[7]arene: synthesis, pH-controlled complexation with paraquat, and application in constructing supramolecular vesicles. Org Lett. 2014;16:2066–9.

    CAS  PubMed  Google Scholar 

  42. Ogoshi T, Shiga R, Hashizume M, Yamagishi T. “Clickable” pillar[5]arenes. Chem Commun. 2011;47:6927–9.

    CAS  Google Scholar 

  43. Buffet K, Nierengarten I, Galanos N, Gillon E, Holler M, Imberty A, et al. Pillar[5]arene-based glycoclusters: synthesis and multivalent binding to pathogenic bacterial lectins. Chem Eur J. 2016;22:2955–63.

    CAS  PubMed  Google Scholar 

  44. Ma Y, Chi X, Yan X, Liu J, Yao Y, Chen W, et al. per-Hydroxylated pillar[6]arene: synthesis, X-ray crystal structure, and host-guest complexation. Org Lett. 2012;14:1532–5.

    CAS  PubMed  Google Scholar 

  45. Si W, Hu XB, Liu XH, Fan RH, Chen ZX, Weng LH, et al. Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes. Tetrahedron Lett. 2011;52:2484–7.

    CAS  Google Scholar 

  46. Aoki T, Ogoshi T, Yamagishi T. Chemically responsive supramolecular structural change of pillar[5]arene nanotubes. Chem Lett. 2011;40:795–7.

    CAS  Google Scholar 

  47. Ogoshi T, Sueto R, Yoshikoshi K, Yamagishi T. One-dimensional channels constructed from per-hydroxylated pillar[6]arene molecules for gas and vapour adsorption. Chem Commun. 2014;50:15209–11.

    CAS  Google Scholar 

  48. Fa S, Sakata Y, Akine S, Ogoshi T. Non-covalent interactions enable the length-controlled generation of discrete tubes capable of guest exchange. Angew Chem Int Ed. 2020;59:9309–13.

    CAS  Google Scholar 

  49. Strilets D, Fa SX, Hardiagon A, Baaden M, Ogoshi T, Barboiu M. Biomimetic approach for highly selective artificial water channels based on tubular pillar[5]arene dimers. Angew Chem Int Ed. 2020;59:23213–9.

    CAS  Google Scholar 

  50. Fa S, Shi T-H, Akama S, Adachi K, Wada K, Tanaka S, et al. Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes. Nat Commun. 2022;13:7378.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi TH, Fa S, Nagata Y, Wada K, Ohtani S, Kato K, et al. Discrete chiral organic nanotubes by stacking pillar[5]arenes using covalent linkages. Cell Rep Phys Sci. 2022;3:101173.

    CAS  Google Scholar 

  52. Shi TH, Nagata Y, Akine S, Ohtani S, Kato K, Ogoshi T. A twisted chiral cavitand with 5-fold symmetry and its length selective binding properties. J Am Chem Soc. 2022;144:23677–84.

    CAS  PubMed  Google Scholar 

  53. Wu GY, Shi BB, Lin Q, Li H, Zhang YM, Yao H, et al. A cationic water-soluble pillar[5]arene: synthesis and host-guest complexation with long linear acids. RSC Adv. 2015;5:4958–63.

    CAS  Google Scholar 

  54. Ogoshi T, Takashima S, Yamagishi TA. Molecular recognition with microporous multilayer films prepared by layer-by-layer assembly of pillar[5]arenes. J Am Chem Soc. 2015;137:10962–4.

    CAS  PubMed  Google Scholar 

  55. Ogoshi T, Takashima S, Yamagishi TA. Photocontrolled reversible guest uptake, storage, and release by azobenzene-modified microporous multilayer films of pillar[5]arenes. J Am Chem Soc. 2018;140:1544–8.

    CAS  Google Scholar 

  56. Ogoshi T, Yoshikoshi K, Sueto R, Nishihara H, Yamagishi TA. Porous carbon fibers containing pores with sizes controlled at the angstrom level by the cavity size of pillar[6]arene. Angew Chem Int Ed. 2015;54:6466–9.

    CAS  Google Scholar 

  57. Fa SX, Yamamoto M, Nishihara H, Sakamoto R, Kamiya K, Nishina Y, et al. Carbon-rich materials with three-dimensional ordering at the angstrom level. Chem Sci. 2020;11:5866–73.

    CAS  PubMed Central  Google Scholar 

  58. Ogoshi T, Sakatsume Y, Onishi K, Tang R, Takahashi K, Nishihara H, et al. The carbonization of aromatic molecules with three-dimensional structures affords carbon materials with controlled pore sizes at the Ångstrom-level. Commun Chem. 2021;4:75.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shivakumar LI, Sanjayan GJ. An easy and multigram-scale synthesis of pillar[5]quinone by the hypervalent iodine oxidation of 1,4-dimethoxypillar[5]arene. Synthesis. 2013;45:896–8.

    CAS  Google Scholar 

  60. Ogoshi T, Sueto R, Yoshikoshi K, Yasuhara K, Yamagishi TA. Spherical vesicles formed by co-assembly of cyclic pentagonal pillar[5]quinone with cyclic hexagonal pillar[6]arene. J Am Chem Soc. 2016;138:8064–7.

    CAS  PubMed  Google Scholar 

  61. Li B, Xu K, Wang Y, Su H, Cui L, Li C. Selective complexation and efficient separation of cis/trans-1,2-dichloroethene isomers by a pillar[5]arene. RSC Adv. 2020;10:45112–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ogoshi T, Sueto R, Yoshikoshi K, Sakata Y, Akine S, Yamagishi TA. Host-guest complexation of perethylated pillar[5]arene with alkanes in the crystal state. Angew Chem Int Ed. 2015;54:9849–52.

    CAS  Google Scholar 

  63. Ogoshi T, Sueto R, Hamada Y, Doitomi K, Hirao H, Sakata Y, et al. Alkane-length sorting using activated pillar[5]arene crystals. Chem Commun. 2017;53:8577–80.

    CAS  Google Scholar 

  64. Ogoshi T, Saito K, Sueto R, Kojima R, Hamada Y, Akine S, et al. Separation of linear and branched alkanes using host-guest complexation of cyclic and branched alkane vapors by crystal state pillar[6]arene. Angew Chem Int Ed. 2018;57:1592–5.

    CAS  Google Scholar 

  65. Ogoshi T, Shimada Y, Sakata Y, Akine S, Yamagishi TA. Alkane-shape-selective vapochromic behavior based on crystal-state host-guest complexation of pillar[5]arene containing one benzoquinone unit. J Am Chem Soc. 2017;139:5664–7.

    CAS  PubMed  Google Scholar 

  66. Ogoshi T, Maruyama K, Sakatsume Y, Kakuta T, Yamagishi TA, Ichikawa T, et al. Guest vapor-induced state change of structural liquid pillar[6]arene. J Am Chem Soc. 2019;141:785–9.

    CAS  PubMed  Google Scholar 

  67. Onishi K, Ohtani S, Kato K, Fa S, Sakata Y, Akine S, et al. State- and water repellency-controllable molecular glass of pillar[5]arenes with fluoroalkyl groups by guest vapors. Chem Sci. 2022;13:4082–7.

    CAS  PubMed Central  Google Scholar 

  68. Ogoshi T, Aoki T, Shiga R, Iizuka R, Ueda S, Demachi K, et al. Cyclic host liquids for facile and high-yield synthesis of [2]rotaxanes. J Am Chem Soc. 2012;134:20322–5.

    CAS  PubMed  Google Scholar 

  69. Ogoshi T, Aoki T, Ueda S, Tamura Y, Yamagishi TA. Pillar[5]arene-based nonionic polyrotaxanes and a topological gel prepared from cyclic host liquids. Chem Commun. 2014;50:6607–9.

    CAS  Google Scholar 

  70. Ogoshi T, Sueto R, Yagyu M, Kojima R, Kakuta T, Yamagishi T, et al. Molecular weight fractionation by confinement of polymer in one-dimensional pillar[5]arene channels. Nat Commun. 2019;10:479.

    PubMed  PubMed Central  Google Scholar 

  71. Ogoshi T, Kayama H, Aoki T, Yamagishi T, Ohashi R, Mizuno M. Extension of polyethylene chains by formation of polypseudorotaxane structures with perpentylated pillar[5]arenes. Polym J. 2014;46:77–81.

    CAS  Google Scholar 

  72. Kato K, Maeda K, Mizuno M, Nishina Y, Fa S, Ohtani S, et al. Room-temperature ring-opening polymerization of δ-valerolactone and ε-caprolactone caused by uptake into porous pillar[5]arene. Cryst Angew Chem Int Ed. 2022;61:e202212874.

    CAS  Google Scholar 

  73. Cao D, Kou Y, Liang J, Chen Z, Wang L, Meier H. A facile and efficient praparation of pillararenes and a pillarquinone. Angew Chem Int Ed. 2009;48:9721–3.

    CAS  Google Scholar 

Download references

Funding

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP19H00909 and JP22H00334 (Scientific Research (A), TO), JST CREST Grant Number JPMJCR18R3 (TO), and MEXT World Premier International Research Center Initiative (WPI), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Ogoshi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogoshi, T. Supramolecular assemblies and polymer recognition based on polygonal and pillar-shaped macrocycles “pillar[n]arenes”. Polym J 55, 1247–1260 (2023). https://doi.org/10.1038/s41428-023-00815-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00815-3

Search

Quick links