Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo

Abstract

CD4+CD25+ suppressor T (TS) cells play a critical role in the maintenance of peripheral tolerance. We examined here proliferative and functional responses as well as differential gene expression in TS cells. We found that TS cells were hyporesponsive to antigenic stimuli in vivo and unable to flux Ca2+ upon T cell receptor (TCR) engagement. However, TS cells were not impaired in their proliferative response to lymphopenia, which was dependent on major histocompatibility complex class II expression. Homeostatic proliferation did not abolish TS cell anergy; rather, it substantially augmented TS cell function. DNA array analyses identified genes that may inhibit responsiveness at a number of levels in multiple signaling cascades in TS cells, as well as several anti-apoptotic genes that may mediate their survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TS cells are hyporesponsive to strong antigenic stimuli in vitro and in vivo.
Figure 2: TS cells are refractory to lymphoid chemokine–induced migration.
Figure 3: TS cells do not flux calcium.
Figure 4: CD4+CD25+ T cells require MHC class II for homeostatic expansion.
Figure 5: CD4+CD25+ and CD4+CD25 T cells acquire a similar cell surface phenotype after homeostatic proliferation, whereas TS cell suppressor function is enhanced.
Figure 6: Regulation of multiple signaling pathways in CD4+CD25+ TS cells.

Similar content being viewed by others

References

  1. Shevach, E. M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  3. Mason, D. & Powrie, F. Control of immune pathology by regulatory T cells. Curr. Opin. Immunol. 10, 649–655 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Piccirillo, C. A. & Shevach, E. M. Cutting edge: Control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wong, P., Goldrath, A. W. & Rudensky, A. Y. Competition for specific intrathymic ligands limits positive selection in a TCR transgenic model of CD4+ T cell development. J. Immunol. 164, 6252–6259 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Annacker, O., Burlen-Defranoux, O., Pimenta-Araujo, R., Cumano, A. & Bandeira, A. Regulatory CD4 T cells control the size of the peripheral activated/memory CD4 T cell compartment. J. Immunol. 164, 3573–3580 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, C. H. & Broxmeyer, H. E. Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J. Leukoc. Biol. 65, 6–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Bowman, E. P. et al. Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members. J. Biol. Chem. 273, 28040–28048 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Bourguignon, L. Y., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem. 275, 1829–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Michiels, F. & Collard, J. G. Rho-like GTPases: their role in cell adhesion and invasion. Biochem. Soc. Symp. 65, 125–146 (1999).

    CAS  PubMed  Google Scholar 

  14. Kimura, M. et al. Impaired Ca/calcineurin pathway in in vivo anergized CD4 T cells. Int. Immunol. 12, 817–824 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Utting, O., Teh, S. J. & Teh, H. S. A population of in vivo anergized T cells with a lower activation threshold for the induction of CD25 exhibit differential requirements in mobilization of intracellular calcium and mitogen-activated protein kinase activation. J. Immunol. 164, 2881–2889 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Clarke, S. R. & Rudensky, A. Y. Survival and homeostatic proliferation of naive peripheral CD4+ T cells in the absence of self peptide:MHC complexes. J. Immunol. 165, 2458–2464 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Viret, C., Wong, F. S. & Janeway, C. A. Jr Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10, 559–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Tanchot, C., le Campion, A., Léaument, S., Dautigny, N. & Lucas, B. Naive CD4+ lymphocytes convert to anergic or memory-like cells in T cell-deprived recipients. Eur. J. Immunol. 31, 2256–2265 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nature Med. 5, 117–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lechner, O. et al. Fingerprints of anergic T cells. Curr. Biol. 11, 587–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Teague, T. K. et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc. Natl Acad. Sci. USA 96, 12691–12696 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sato, T., Irie, S., Kitada, S. & Reed, J. C. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268, 411–415 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Nocentini, G. et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 6216–6221 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szondy, Z., Reichert, U. & Fesus, L. Retinoic acids regulate apoptosis of T lymphocytes through an interplay between RAR and RXR receptors. Cell Death Differ. 5, 4–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  28. Wallach, D. et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 17, 331–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Rogers, P. R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. Ox40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of cd4 T cells. Immunity 15, 445–455 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Hurtado, J. C., Kim, Y. J. & Kwon, B. S. Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J. Immunol. 158, 2600–2609 (1997).

    CAS  PubMed  Google Scholar 

  31. Silveira, P. A., Baxter, A. G., Cain, W. E. & van Driel, I. R. A major linkage region on distal chromosome 4 confers susceptibility to mouse autoimmune gastritis. J. Immunol. 162, 5106–5111 (1999).

    CAS  PubMed  Google Scholar 

  32. Annacker, O. et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol. 166, 3008–3018 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Swan, K. A. et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J. 14, 276–285 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, F. & Perlmutter, R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. O'Shea, C. C., Crompton, T., Rosewell, I. R., Hayday, A. C. & Owen, M. J. Raf regulates positive selection. Eur. J. Immunol. 26, 2350–2355 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Goldrath, A. W. & Bevan, M. J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suri-Payer, E., Amar, A. Z., Thornton, A. M. & Shevach, E. M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  39. Kuniyasu, Y. et al. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int. Immunol. 12, 1145–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory–like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murali-Krishna, K. & Ahmed, R. Cutting edge: naive T cells masquerading as memory cells. J. Immunol. 165, 1733–1737 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Cho, B. K., Rao, V. P., Ge, Q., Eisen, H. N. & Chen, J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192, 549–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barnden, M. J., Allison, J., Heath, W. R. & Carbone, F. R. Defective TCR expression in transgenic mice constructed with cDNA- based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 76, 34–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Wong, P., Barton, G. M., Forbush, K. A. & Rudensky, A. Y. Dynamic tuning of T cell reactivity by self-peptide-major histocompatibility complex ligands. J. Exp. Med. 193, 1179–1187 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosen, S. & Skaletsky, H. J. Primer3. Code available at http://www.genome.wi.mit.edu/genome_software/other/primer3.html (1998).

  46. Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA-4. Science 282, 2263–2266 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Sathish, J. G. et al. Constitutive association of SHP-1 with leukocyte-associated Ig-like receptor-1 in human T cells. J. Immunol. 166, 1763–1770 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunol. 2, 261–268 (2001).

    Article  CAS  Google Scholar 

  49. Perez-Villar, J. J. et al. CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2–containing phosphotyrosine phosphatase SHP-1. Mol. Cell. Biol. 19, 2903–2912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vang, T. et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J. Exp. Med. 193, 497–507 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramstad, C., Sundvold, V., Johansen, H. K. & Lea, T. cAMP-dependent protein kinase (PKA) inhibits T cell activation by phosphorylating ser-43 of raf-1 in the MAPK/ERK pathway. Cell Signal. 12, 557–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Powell, J. D., Lerner, C. G., Ewoldt, G. R. & Schwartz, R. H. The -180 site of the IL-2 promoter is the target of CREB/CREM binding in T cell anergy. J. Immunol. 163, 6631–6639 (1999).

    CAS  PubMed  Google Scholar 

  53. Bodor, J. et al. Suppression of T-cell responsiveness by inducible cAMP early repressor (ICER). J. Leukoc. Biol. 69, 1053–1059 (2001).

    CAS  PubMed  Google Scholar 

  54. Chu, Y., Solski, P. A., Khosravi-Far, R., Der, C. J. & Kelly, K. The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J. Biol. Chem. 271, 6497–6501 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Whitehurst, C. E. & Geppert, T. D. MEK1 and the extracellular signal-regulated kinases are required for the stimulation of IL-2 gene transcription in T cells. J. Immunol. 156, 1020–1029 (1996).

    CAS  PubMed  Google Scholar 

  56. Papiernik, M., de Moraes, M. L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Dey, B. R., Spence, S. L., Nissley, P. & Furlanetto, R. W. Interaction of human suppressor of cytokine signaling (SOCS)–2 with the insulin-like growth factor-I receptor. J. Biol. Chem. 273, 24095–24101 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Ram, P. A. & Waxman, D. J. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J. Biol. Chem. 274, 35553–35561 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Nicholson, S. E. et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18, 375–385 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Minamoto, S. et al. Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem. Biophys. Res. Commun. 237, 79–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Metcalf, D. et al. Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405, 1069–1073 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Wotton, D., Lo, R. S., Lee, S. & Massague, J. A Smad transcriptional corepressor. Cell 97, 29–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Lewis, K. A. et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 404, 411–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 10, 10 (2001).

    Google Scholar 

  66. Mamane, Y., Sharma, S., Petropoulos, L., Lin, R. & Hiscott, J. Posttranslational regulation of IRF-4 activity by the immunophilin FKBP52. Immunity 12, 129–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Ye, J., Cippitelli, M., Dorman, L., Ortaldo, J. R. & Young, H. A. The nuclear factor YY1 suppresses the human γ interferon promoter through two mechanisms: inhibition of AP1 binding and activation of a silencer element. Mol. Cell. Biol. 16, 4744–4753 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwenger, G. T., Fournier, R., Hall, L. M., Sanderson, C. J. & Mordvinov, V. A. Nuclear factor of activated T cells and YY1 combine to repress IL-5 expression in a human T-cell line. J. Allergy Clin. Immunol. 104, 820–827 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Hardy, C. F., Dryga, O., Seematter, S., Pahl, P. M. & Sclafani, R. A. mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc. Natl Acad. Sci. USA 94, 3151–3155 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Taams, L. S. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31, 1122–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Schall, T. J. et al. A human T cell-specific molecule is a member of a new gene family. J. Immunol. 141, 1018–1025 (1988).

    CAS  PubMed  Google Scholar 

  74. Bielekova, B., Lincoln, A., McFarland, H. & Martin, R. Therapeutic potential of phosphodiesterase-4 and -3 inhibitors in Th1-mediated autoimmune diseases. J. Immunol. 164, 1117–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Allen for FACS expertise, C. Plata for excellent animal care and M. Bevan, M. Bix and C. Dong for critically reviewing the manuscript. Supported by grants from the Howard Hughes Medical Institute and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc A. Gavin or Alexander Rudensky.

Supplementary information

Web Figure 1.

Known genes showing differential expression between B6 CD4+CD25+ and CD4+CD25- cells as determined by cRNA hybridization to Affymetrix mu11K and mu19K chips. Affymetrix fold-change values were calculated with their GeneChip software so that negative and positive fold change values indicate lower and higher expression in freshly isolated B6 CD4+CD25+ versus CD4+CD25- cells, respectively. Gene annotation numbers starting with TC and ET refer to TIGR Mouse Gene Index entries (see http://www.tigr.org/tdb/mgi/). Biotinylated cRNA was generated with one (Exp. 1) or two (Exp. 2) rounds of in vitro transcription (see Mthods). (GIF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavin, M., Clarke, S., Negrou, E. et al. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat Immunol 3, 33–41 (2002). https://doi.org/10.1038/ni743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing