Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants

Abstract

The zebrafish is firmly established as a genetic model for the study of vertebrate blood development. Here we have characterized the blood-forming system of adult zebrafish. Each major blood lineage can be isolated by flow cytometry, and with these lineal profiles, defects in zebrafish blood mutants can be quantified. We developed hematopoietic cell transplantation to study cell autonomy of mutant gene function and to establish a hematopoietic stem cell assay. Hematopoietic cell transplantation can rescue multilineage hematopoiesis in embryonic lethal gata1−/− mutants for over 6 months. Direct visualization of fluorescent donor cells in embryonic recipients allows engraftment and homing events to be imaged in real time. These results provide a cellular context in which to study the genetics of hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Separation of major blood cell lineages from WKM by light-scatter characteristics.
Figure 2: Analysis of zebrafish transgenic lines by flow cytometry.
Figure 3: Flow cytometry profiling of zebrafish blood mutants.
Figure 4: Hematopoietic cell transplantation rescues lethality in gata1−/− mutants.
Figure 5: Transplantation of WKM from double-transgenic donors allows independent visualization of leukocytes and erythrocytes in translucent recipient embryos.

Similar content being viewed by others

References

  1. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Shivdasani, R.A., Mayer, E.L. & Orkin, S.H. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Yamada, Y. et al. The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc. Natl. Acad. Sci. USA 95, 3890–3895 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Warren, A.J. et al. The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78, 45–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Mucenski, M.L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Amatruda, J.F. & Zon, L.I. Dissecting hematopoiesis and disease using the zebrafish. Dev. Biol. 216, 1–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ransom, D.G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996).

    CAS  PubMed  Google Scholar 

  14. Weinstein, B.M. et al. Hematopoietic mutations in the zebrafish. Development 123, 303–309 (1996).

    CAS  PubMed  Google Scholar 

  15. Liao, E.C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev. 12, 621–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parker, L. & Stainier, D.Y. Cell-autonomous and non-autonomous requirements for the zebrafish gene cloche in hematopoiesis. Development 126, 2643–2651 (1999).

    CAS  PubMed  Google Scholar 

  17. Liao, E.C. et al. Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish. Development 129, 649–659 (2002).

    CAS  PubMed  Google Scholar 

  18. Trede, N.S., Zapata, A. & Zon, L.I. Fishing for lymphoid genes. Trends Immunol. 22, 302–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Traver, D. & Zon, L.I. Walking the walk: migration and other common themes in blood and vascular development. Cell 108, 731–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Thompson, M.A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Burns, C.E. et al. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp. Hematol. 30, 1381–1389 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kalev-Zylinska, M.L. et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129, 2015–2030 (2002).

    CAS  PubMed  Google Scholar 

  24. Zapata, A. Ultrastructural study of the teleost fish kidney. Dev. Comp. Immunol. 3, 55–65 (1979).

    Article  CAS  PubMed  Google Scholar 

  25. Jagadeeswaran, P., Sheehan, J.P., Craig, F.E. & Troyer, D. Identification and characterization of zebrafish thrombocytes. Br. J. Haematol. 107, 731–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Shapiro, H.M. Parameters and probes. In Practical Flow Cytometry 271–410 (Wiley-Liss, New York, 2002).

    Google Scholar 

  27. Zon, L.I. et al. Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 81, 3234–3241 (1993).

    CAS  PubMed  Google Scholar 

  28. Langenau, D.M. et al. Myc-induced T-cell leukemia in transgenic zebrafish. Science 299, 887–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997).

    CAS  PubMed  Google Scholar 

  30. Shafizadeh, E. et al. Characterization of zebrafish merlot/chablis as non-mammalian vertebrate models for severe congenital anemia due to protein 4.1 deficiency. Development 129, 4359–4370 (2002).

    CAS  PubMed  Google Scholar 

  31. Paw, B.H. et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat. Genet. 34, 59–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Liao, E.C. et al. Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid β-spectrin structure, and function in red cell morphogenesis and membrane stability. Development 127, 5123–5132 (2000).

    CAS  PubMed  Google Scholar 

  33. Tanner, M.J. Band 3 anion exchanger and its involvement in erythrocyte and kidney disorders. Curr. Opin. Hematol. 9, 133–139 (2002).

    Article  PubMed  Google Scholar 

  34. Trede, N.S. & Zon, L.I. Development of T-cells during fish embryogenesis. Dev. Comp. Immunol. 22, 253–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Willett, C.E., Zapata, A.G., Hopkins, N. & Steiner, L.A. Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 182, 331–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Lyons, S.E. et al. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc. Natl. Acad. Sci. USA 99, 5454–5459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Butcher, E.C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Al-Adhami, M.A. & Kunz, Y.W. Ontogenesis of haematopoietic sites in Brachydanio rerio. Dev. Growth Differ. 19, 171–179 (1977).

    Article  Google Scholar 

  39. Willett, C.E., Cortes, A., Zuasti, A. & Zapata, A.G. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn. 214, 323–336 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Bennett, C.M. et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Lieschke, G.J., Oates, A.C., Crowhurst, M.O., Ward, A.C. & Layton, J.E. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087–3096 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745 (1999).

    CAS  PubMed  Google Scholar 

  43. Bowden, L.A. et al. Generation and characterisation of monoclonal antibodies against rainbow trout, Oncorhynchus mykiss, leucocytes. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 117, 291–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, N. et al. Functional and molecular characterization of teleost leukocytes. Immunol. Rev. 166, 187–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Secombes, C.J., van Groningen, J.J. & Egberts, E. Separation of lymphocyte subpopulations in carp Cyprinus carpio L. by monoclonal antibodies: immunohistochemical studies. Immunology 48, 165–175 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rombout, J.H., Taverne-Thiele, A.J. & Villena, M.I. The gut-associated lymphoid tissue (GALT) of carp (Cyprinus carpio L.): an immunocytochemical analysis. Dev. Comp. Immunol. 17, 55–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Slierendrecht, W.J., Lorenzen, N., Glamann, J., Koch, C. & Rombout, J.H. Immunocytochemical analysis of a monoclonal antibody specific for rainbow trout (Oncorhynchus mykiss) granulocytes and thrombocytes. Vet. Immunol. Immunopathol. 46, 349–360 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Kollner, B., Blohm, U., Kotterba, G. & Fischer, U. A monoclonal antibody recognising a surface marker on rainbow trout (Oncorhynchus mykiss) monocytes. Fish Shellfish Immunol. 11, 127–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lux, S.E. and Palek, J. Disorders of the red cell membrane. In Blood: Principles and Practice of Hematology (eds. Handin, R.I., Lux, S.E. & Stossel, T.P.) 1701–1818 (J.P. Lippincott, Philadelphia, 1995).

    Google Scholar 

  50. Hoover, K.B. & Bryant, P.J. The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr. Opin. Cell Biol. 12, 229–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Danilova, N. & Steiner, L.A. B cells develop in the zebrafish pancreas. Proc. Natl. Acad. Sci. USA 99, 13711–13716 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pevny, L. et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Weiss, M.J., Keller, G. & Orkin, S.H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 1184–1197 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C. & Orkin, S.H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 93, 12355–12358 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fleischman, R.A., Custer, R.P. & Mintz, B. Totipotent hematopoietic stem cells: normal self-renewal and differentiation after transplantation between mouse fetuses. Cell 30, 351–359 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Wagers, A.J., Sherwood, R.I., Christensen, J.L. & Weissman, I.L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio) (University of Oregon Press, Eugene, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank A. Kiger, N. Trede, and P. Ernst for critical evaluation of the manuscript; H. Stern, J. Amatruda, and M. Fleming for providing sections and review of histology; A. Flint and M. Handley for assistance with flow cytometry; and D. Langenau and T. Look, and H.F. Lin and R. Handin, for providing rag2eGFP and itga2beGFP transgenic zebrafish, respectively, prior to publication. We thank R. Wingert and J. Cope for providing mutant lines; H. Zhu for assistance with the gata1dsRED line; and A. Winzeler for technical assistance. Supported by the Irvington Institute for Immunological Research (D.T.); the Howard Hughes Medical Institute (B.P. and L.I.Z.); the National Institutes of Health (B.P. and L.I.Z.) and the William Randolph Hearst Foundation (B.P.); and the Grousbeck family and Legal Sea Foods (L.I.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I Zon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1.

Hematopoietic cell transplantation rescues erythropoiesis and survival of gata-1-/- mutants. Individual gata-1-/- recipient at 8 weeks post-transplantation, showing numbers of donor-derived GFP+ cells similar to those in age-matched GATA-1eGFP donor animals. (MOV 1013 kb)

Supplementary Video 2.

Transplantation of whole kidney marrow from double transgenic donors allows independent visualization of leukocytes (GFP+) and erythrocytes (dsRED+) in translucent recipient embryos. On day 1 post-transplantation, videomicroscopy of tail vessels in gata-1-/- recipient showed slow-moving, round leukocytes, larger leukocytes displaying an end-over-end tumbling migration, and rapidly circulating erythrocytes. (MOV 1855 kb)

Supplementary Video 3.

Transplantation of DP WKM leads to rapid engraftment of hematopoietic sites in bloodless recipients. Ventral view of a bloodless recipient at 5 days post-transplantation. Robust engraftment of one thymic lobe by GFP+ leukocytes is seen between the eye and the pectoral fin on the right side (top) of the larva. (MOV 3048 kb)

Supplementary Video 4.

bloodless recipients display sustained, multilineage hematopoiesis from donor-derived cells. Robust reconstitution of dsRED+ erythrocytes and GFP+ leukocytes as observed in the tail capillaries of a bloodless recipient at 8 weeks post-transplantation. (MOV 2593 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traver, D., Paw, B., Poss, K. et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4, 1238–1246 (2003). https://doi.org/10.1038/ni1007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1007

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing