Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair

Abstract

Induction of macrophage necrosis is a strategy used by virulent Mycobacterium tuberculosis (Mtb) to avoid innate host defense. In contrast, attenuated Mtb causes apoptosis, which limits bacterial replication and promotes T cell cross-priming by antigen-presenting cells. Here we show that Mtb infection causes plasma membrane microdisruptions. Resealing of these lesions, a process crucial for preventing necrosis and promoting apoptosis, required translocation of lysosomal and Golgi apparatus–derived vesicles to the plasma membrane. Plasma membrane repair depended on prostaglandin E2 (PGE2), which regulates synaptotagmin 7 (Syt-7), the calcium sensor involved in the lysosome-mediated repair mechanism. By inducing production of lipoxin A4 (LXA4), which blocks PGE2 biosynthesis, virulent Mtb prevented membrane repair and induced necrosis. Thus, virulent Mtb impairs macrophage plasma membrane repair to evade host defenses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infection of human macrophages with virulent H37Rv inhibits lysosomal and Golgi-mediated plasma membrane repair.
Figure 2: Distinct calcium sensors regulate the recruitment of lysosomal and Golgi apparatus–derived membranes in Mtb-infected human macrophages.
Figure 3: PGE2 reconstitutes lysosomal repair in human macrophages infected with virulent Mtb.
Figure 4: Bacterial growth and the death modality of Mtb-infected mouse macrophages is regulated by eicosanoids.
Figure 5: The fate of Mtb-infected macrophages in vitro reflects the innate control of infection in vivo.
Figure 6: PGE2 regulates Syt-7 expression in mouse macrophages.
Figure 7: Syt-7 is essential for the induction of plasma membrane repair, prevention of necrosis and control of bacterial growth in mouse macrophages.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. McNeil, P.L. & Steinhardt, R.A. Plasma membrane disruption: repair, prevention, adaptation. Annu. Rev. Cell Dev. Biol. 19, 697–731 (2003).

    Article  CAS  Google Scholar 

  2. Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 304, 1515–1518 (2004).

    Article  CAS  Google Scholar 

  3. Smith, J. et al. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect. Immun. 76, 5478–5487 (2008).

    Article  CAS  Google Scholar 

  4. Bi, G.Q., Alderton, J.M. & Steinhardt, R.A. Calcium-regulated exocytosis is required for cell membrane resealing. J. Cell Biol. 131, 1747–1758 (1995).

    Article  CAS  Google Scholar 

  5. Togo, T., Alderton, J.M., Bi, G.Q. & Steinhardt, R.A. The mechanism of facilitated cell membrane resealing. J. Cell Sci. 112, 719–731 (1999).

    CAS  PubMed  Google Scholar 

  6. Rodriguez, A., Webster, P., Ortego, J. & Andrews, N.W. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J. Cell Biol. 137, 93–104 (1997).

    Article  CAS  Google Scholar 

  7. Martinez, I. et al. Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J. Cell Biol. 148, 1141–1149 (2000).

    Article  CAS  Google Scholar 

  8. Martens, S. & McMahon, H.T. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9, 543–556 (2008).

    Article  CAS  Google Scholar 

  9. Sudhof, T.C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629–7632 (2002).

    Article  CAS  Google Scholar 

  10. Craxton, M. & Goedert, M. Alternative splicing of synaptotagmins involving transmembrane exon skipping. FEBS Lett. 460, 417–422 (1999).

    Article  CAS  Google Scholar 

  11. Burgoyne, R.D., O'Callaghan, D.W., Hasdemir, B., Haynes, L.P. & Tepikin, A.V. Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci. 27, 203–209 (2004).

    Article  CAS  Google Scholar 

  12. Bourne, Y., Dannenberg, J., Pollmann, V., Marchot, P. & Pongs, O. Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J. Biol. Chem. 276, 11949–11955 (2001).

    Article  CAS  Google Scholar 

  13. Haynes, L.P., Thomas, G.M. & Burgoyne, R.D. Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase β and trans-Golgi network-plasma membrane traffic. J. Biol. Chem. 280, 6047–6054 (2005).

    Article  CAS  Google Scholar 

  14. Armstrong, J.A. & Hart, P.D. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134, 713–740 (1971).

    Article  CAS  Google Scholar 

  15. Schaible, U.E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9, 1039–1046 (2003).

    Article  CAS  Google Scholar 

  16. Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801 (2008).

    Article  CAS  Google Scholar 

  17. Bafica, A. et al. Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase–dependent lipoxin production. J. Clin. Invest. 115, 1601–1606 (2005).

    Article  CAS  Google Scholar 

  18. Herb, F. et al. ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum. Mol. Genet. 17, 1052–1060 (2008).

    Article  CAS  Google Scholar 

  19. Abdallah, A.M. et al. Type VII secretion—mycobacteria show the way. Nat. Rev. Microbiol. 5, 883–891 (2007).

    Article  CAS  Google Scholar 

  20. Hsu, T. et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100, 12420–12425 (2003).

    Article  CAS  Google Scholar 

  21. Chakrabarti, S. et al. Impaired membrane resealing and autoimmune myositis in synaptotagmin VII–deficient mice. J. Cell Biol. 162, 543–549 (2003).

    Article  CAS  Google Scholar 

  22. Terasaki, M., Miyake, K. & McNeil, P.L. Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J. Cell Biol. 139, 63–74 (1997).

    Article  CAS  Google Scholar 

  23. McNeil, P.L. Incorporation of macromolecules into living cells. Methods Cell Biol. 29, 153–173 (1989).

    Article  CAS  Google Scholar 

  24. Granger, B.L. et al. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J. Biol. Chem. 265, 12036–12043 (1990).

    CAS  PubMed  Google Scholar 

  25. Reddy, A., Caler, E.V. & Andrews, N.W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169 (2001).

    Article  CAS  Google Scholar 

  26. Novikoff, P.M., Tulsiani, D.R., Touster, O., Yam, A. & Novikoff, A.B. Immunocytochemical localization of α-d-mannosidase II in the Golgi apparatus of rat liver. Proc. Natl. Acad. Sci. USA 80, 4364–4368 (1983).

    Article  CAS  Google Scholar 

  27. Hart, D.N., Starling, G.C., Calder, V.L. & Fernando, N.S. B7/BB-1 is a leucocyte differentiation antigen on human dendritic cells induced by activation. Immunology 79, 616–620 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, H.Y. et al. The 170-kDa glucose-regulated stress protein is an endoplasmic reticulum protein that binds immunoglobulin. Mol. Biol. Cell 4, 1109–1119 (1993).

    Article  CAS  Google Scholar 

  29. Gan, H. et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat. Immunol. 9, 1189–1197 (2008).

    Article  CAS  Google Scholar 

  30. Chen, M., Gan, H. & Remold, H.G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176, 3707–3716 (2006).

    Article  CAS  Google Scholar 

  31. Klausner, R.D., Donaldson, J.G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).

    Article  CAS  Google Scholar 

  32. O'Callaghan, D.W. et al. Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio-temporal aspects of Ca2+ signal transduction. J. Biol. Chem. 277, 14227–14237 (2002).

    Article  CAS  Google Scholar 

  33. Togo, T., Alderton, J.M. & Steinhardt, R.A. Long-term potentiation of exocytosis and cell membrane repair in fibroblasts. Mol. Biol. Cell 14, 93–106 (2003).

    Article  CAS  Google Scholar 

  34. Rodriguez, A., Martinez, I., Chung, A., Berlot, C.H. & Andrews, N.W. cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J. Biol. Chem. 274, 16754–16759 (1999).

    Article  CAS  Google Scholar 

  35. Regan, J.W. EP2 and EP4 prostanoid receptor signaling. Life Sci. 74, 143–153 (2003).

    Article  CAS  Google Scholar 

  36. Fujino, H., West, K.A. & Regan, J.W. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2 . J. Biol. Chem. 277, 2614–2619 (2002).

    Article  CAS  Google Scholar 

  37. Simpson, C.S. & Morris, B.J. Induction of c-fos and zif/268 gene expression in rat striatal neurons, following stimulation of D1-like dopamine receptors, involves protein kinase A and protein kinase C. Neuroscience 68, 97–106 (1995).

    Article  CAS  Google Scholar 

  38. Vlahos, C.J., Matter, W.F., Hui, K.Y. & Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H–1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–5248 (1994).

    CAS  Google Scholar 

  39. Fujino, H., Salvi, S. & Regan, J.W. Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2 . Mol. Pharmacol. 68, 251–259 (2005).

    CAS  PubMed  Google Scholar 

  40. Fujino, H., Xu, W. & Regan, J.W. Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J. Biol. Chem. 278, 12151–12156 (2003).

    Article  CAS  Google Scholar 

  41. Hinchey, J. et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest. 117, 2279–2288 (2007).

    Article  CAS  Google Scholar 

  42. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24, 105–117 (2006).

    Article  CAS  Google Scholar 

  43. Deretic, V. et al. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell. Microbiol. 8, 719–727 (2006).

    Article  CAS  Google Scholar 

  44. Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 102, 4033–4038 (2005).

    Article  CAS  Google Scholar 

  45. van der Wel, N.N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  CAS  Google Scholar 

  46. Sada-Ovalle, I., Chiba, A., Gonzales, A., Brenner, M.B. & Behar, S.M. Innate invariant NKT cells recognize Mycobacterium tuberculosis–infected macrophages, produce interferon-γ, and kill intracellular bacteria. PLoS Pathog. 4, e1000239 (2008).

    Article  Google Scholar 

  47. Woodworth, J.S., Wu, Y. & Behar, S.M. Mycobacterium tuberculosis–specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. J. Immunol. 181, 8595–8603 (2008).

    Article  CAS  Google Scholar 

  48. Divangahi, M. et al. NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J. Immunol. 181, 7157–7165 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I-C. Ho for critical reading of the manuscript; and B. Koller (University of North Carolina) for Ptges−/− mice. Supported by the US National Institutes of Health (AI50216 and AI072143 to H.G.R.) and the Fonds de la Recherche en Santé du Québec (M.D.).

Author information

Authors and Affiliations

Authors

Contributions

S.M.B., H.G.R. and M.D. conceived of and designed the experiments, analyzed the data and wrote the paper; M.D., M.C. and H.G. did the experiments with assistance from D.D.; T.T.H. did confocal microscopy; and D.M.L. and S.F. provided reagents and intellectual input.

Corresponding authors

Correspondence to Samuel M Behar or Heinz G Remold.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 5151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divangahi, M., Chen, M., Gan, H. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10, 899–906 (2009). https://doi.org/10.1038/ni.1758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing