Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: cytotoxic drug immunoconjugates for cancer therapy

Abstract

The successful introduction of genetically engineered human and chimeric immunoglobulin proteins has established monoclonal antibodies (mAbs) as a validated approach for treating malignancies. The unique properties of mAb therapies including their high affinity and specificity, and the differential expression of target antigen in tumor cells versus normal cells make them attractive agents for cancer immunotherapy. The field of immunoconjugate development attempts to combine the specificity of mAb therapies with cytotoxic and radionuclide molecules, thereby combining the best characteristics of these two different modalities. Two radiolabeled mAbs, 90Y-ibritumomab tiuxetan and 131I-tositumomab, and one drug conjugate, gemtuzumab ozogamicin have been approved for the treatment of malignancies. Other conjugates carrying toxic payloads of calicheamicin, geldanamycin, maytansinoids and taxoids as well as peptide exotoxins are undergoing preclinical and clinical development. Nevertheless, several obstacles have limited robust antitumor activity and broad application of imunoconjugates, including the optimization of three structural components of the immunoconjugate (i.e. mAb and target specificity, chemical linker design, and the cytotoxin), as well as issues common to mAb therapy such as heterogeneous antigen expression, which can limit uniform antibody delivery. This Review examines optimal design, the lessons learned from clinical immunoconjugate development, and the promising agents in early preclinical/clinical development for the treatment of cancer.

Key Points

  • Immunoconjugates should be viewed as sophisticated delivery systems for antitumor cytotoxic and radionuclide moieties

  • Successful immunoconjugate development requires consideration and optimization of the three major components of the molecule including antibody/antigen target, linker, and payload

  • Biodistribution analysis with radioimmunoconjugates, approved cytotoxic immunoconjugates, or those in development indicate that antigen on circulating cells or circulating shed antigen can profoundly influence toxicity and reduce efficacy

  • Phase II studies indicate that a cytotoxic immunoconjugate (gemtuzumab ozogamicin) can elicit clinically meaningful complete response rates in AML

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the three components of an immunoconjugate and examples of antigen targets, linker chemistry, and payloads
Figure 2: Improved biodistribution and localization to lymph nodes with clearance of circulating target antigen expressing cells
Figure 3: Schematic diagram to illustrate the crossfire phenomena and bystander effect

Similar content being viewed by others

References

  1. Köhler G and Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497

    Article  Google Scholar 

  2. Zangemeister-Wittke U (2005) Antibodies for targeted cancer therapy—technical aspects and clinical perspectives. Pathobiology 72: 279–286

    Article  CAS  Google Scholar 

  3. Mendelsohn J and Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21: 2787–2799

    Article  CAS  Google Scholar 

  4. Arnould L et al. (2006) Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94: 259–267

    Article  CAS  Google Scholar 

  5. Bleeker WK et al. (2004) Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 173: 4699–4707

    Article  CAS  Google Scholar 

  6. Iannello A and Ahmad A (2005) Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 24: 487–499

    Article  CAS  Google Scholar 

  7. Rowinsky EK et al. (2004) Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer [see comment]. J Clin Oncol 22: 3003–3015

    Article  CAS  Google Scholar 

  8. Law CL et al. (2006) Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates. Cancer Res 66: 2328–2337

    Article  CAS  Google Scholar 

  9. Park JW et al. (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8: 1172–1181

    CAS  PubMed  Google Scholar 

  10. Sjogren HO et al. (1997) Antitumor activity of carcinoma-reactive BR96-doxorubicin conjugate against human carcinomas in athymic mice and rats and syngeneic rat carcinomas in immunocompetent rats. Cancer Res 57: 4530–4536

    CAS  PubMed  Google Scholar 

  11. Trail PA et al. (1997) Effect of linker variation on the stability, potency, and efficacy of carcinoma-reactive BR64-doxorubicin immunoconjugates. Cancer Res 57: 100–105

    CAS  PubMed  Google Scholar 

  12. Trail PA et al. (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261: 212–215

    Article  CAS  Google Scholar 

  13. Friedman PN et al. (1993) Antitumor activity of the single-chain immunotoxin BR96 sFv-PE40 against established breast and lung tumor xenografts. J Immunol 150: 3054–3061

    CAS  PubMed  Google Scholar 

  14. Friedman PN et al. (1993) BR96 sFv-PE40, a potent single-chain immunotoxin that selectively kills carcinoma cells. Cancer Res 53: 334–339

    CAS  PubMed  Google Scholar 

  15. Trail PA et al. (1992) Antigen-specific activity of carcinoma-reactive BR64-doxorubicin conjugates evaluated in vitro and in human tumor xenograft models. Cancer Res 52: 5693–5700

    CAS  PubMed  Google Scholar 

  16. Hellstrom I et al. (1990) Highly tumor-reactive, internalizing, mouse monoclonal antibodies to Le(y)-related cell surface antigens. Cancer Res 50: 2183–2190

    CAS  PubMed  Google Scholar 

  17. Saleh MN et al. (2000) Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol 18: 2282–2292

    Article  CAS  Google Scholar 

  18. Tolcher AW et al. (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 17: 478–484

    Article  CAS  Google Scholar 

  19. Ajani JA et al. (2000) A multi-institutional phase II study of BMS-182248-01 (BR96-doxorubicin conjugate) administered every 21 days in patients with advanced gastric adenocarcinoma [see comment]. Cancer J 6: 78–81

    CAS  PubMed  Google Scholar 

  20. Knox SJ et al. (1996) Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res 2: 457–470

    CAS  PubMed  Google Scholar 

  21. van der Velden VH et al. (2004) High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg) treatment in acute myeloid leukemia patients. Leukemia 18: 983–988

    Article  CAS  Google Scholar 

  22. Pupa SM et al. (1993) The extracellular domain of the c-erbB-2 oncoprotein is released from tumor cells by proteolytic cleavage. Oncogene 8: 2917–2923

    CAS  PubMed  Google Scholar 

  23. Christianson TA et al. (1998) NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 58: 5123–5129

    CAS  PubMed  Google Scholar 

  24. Baeckstrom D et al. (1991) Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins. J Biol Chem 266: 21537–21547

    CAS  PubMed  Google Scholar 

  25. Erickson HK et al. (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66: 4426–4433

    Article  CAS  Google Scholar 

  26. Kovtun YV et al. (2006) Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66: 3214–3221

    Article  CAS  Google Scholar 

  27. Wu AM and Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23: 1137–1146

    Article  Google Scholar 

  28. Chakrabarti MC et al. (1996) Prevention of radiolysis of monoclonal antibody during labeling. J Nucl Med 37: 1384–1388

    CAS  PubMed  Google Scholar 

  29. Schnell R et al. (2002) A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin's and non-Hodgkin's lymphoma. Clin Cancer Res 8: 1779–1786

    CAS  PubMed  Google Scholar 

  30. Kreitman RJ et al. (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 23: 6719–6729

    Article  CAS  Google Scholar 

  31. Posey JA et al. (2002) A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res 8: 3092–3099

    CAS  PubMed  Google Scholar 

  32. Schnell R et al. (2003) Clinical evaluation of ricin A-chain immunotoxins in patients with Hodgkin's lymphoma. Ann Oncol 14: 729–736

    Article  CAS  Google Scholar 

  33. Frankel AE et al. (2002) Diphtheria toxin conjugate therapy of cancer. Cancer Chemother Biol Response Modif 20: 301–313

    CAS  PubMed  Google Scholar 

  34. Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44: 361–370

    Article  CAS  Google Scholar 

  35. Tsimberidou AM et al. (2003) Anti-B4 blocked ricin post chemotherapy in patients with chronic lymphocytic leukemia—long-term follow-up of a monoclonal antibody-based approach to residual disease. Leuk Lymphoma 44: 1719–1725

    Article  CAS  Google Scholar 

  36. Pastan I et al. (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6: 559–565

    Article  CAS  Google Scholar 

  37. Uesugi M and Sugiura Y (1992) DNA cleaving modes in minor groove of DNA helix by esperamicin and calicheamicin antitumor antibiotics. Nucleic Acids Symp Ser 1–2

  38. Hinman LM et al. (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53: 3336–3342

    CAS  PubMed  Google Scholar 

  39. Salzberg AA and Dedon PC (2000) DNA bending is a determinant of calicheamicin target recognition. Biochemistry 39: 7605–7612

    Article  CAS  Google Scholar 

  40. DiJoseph JF et al. (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103: 1807–1814

    Article  CAS  Google Scholar 

  41. Woyke T et al. (2001) In vitro activities and postantifungal effects of the potent dolastatin 10 derivative auristatin PHE. Antimicrob Agents Chemother 45: 3580–3584

    Article  CAS  Google Scholar 

  42. Mohammad RM et al. (1999) A new tubulin polymerization inhibitor, auristatin PE, induces tumor regression in a human Waldenstrom's macroglobulinemia xenograft model. Int J Oncol 15: 367–372

    CAS  PubMed  Google Scholar 

  43. Francisco JA et al. (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102: 1458–1465

    Article  CAS  Google Scholar 

  44. Doronina SO et al. (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconj Chem 17: 114–124

    Article  CAS  Google Scholar 

  45. Sutherland MS et al. (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem 281: 10540–10547

    Article  CAS  Google Scholar 

  46. Law CL et al. (2004) Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin Cancer Res 10: 7842–7851

    Article  CAS  Google Scholar 

  47. Doronina SO et al. (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21: 778–784

    Article  CAS  Google Scholar 

  48. Smith LM et al. (2006) Potent cytotoxicity of an auristatin-containing antibody-drug conjugate targeting melanoma cells expressing melanotransferrin/p97. Mol Cancer Ther 5: 1474–1482

    Article  CAS  Google Scholar 

  49. Tse KF et al. (2006) CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res 12: 1373–1382

    Article  CAS  Google Scholar 

  50. Afar DE et al. (2004) Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol Cancer Ther 3: 921–932

    CAS  PubMed  Google Scholar 

  51. Bhaskar V et al. (2003) E-selectin up-regulation allows for targeted drug delivery in prostate cancer. Cancer Res 63: 6387–6394

    CAS  PubMed  Google Scholar 

  52. Widdison WC et al. (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49: 4392–4408

    Article  CAS  Google Scholar 

  53. Wang L et al. (2005) Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 14: 2436–2446

    Article  CAS  Google Scholar 

  54. Liu Z et al. (2005) Metabolism studies of the anti-tumor agent maytansine and its analog ansamitocin P-3 using liquid chromatography/tandem mass spectrometry. J Mass Spectrom 40: 389–399

    Article  CAS  Google Scholar 

  55. Tassone P et al. (2004) Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood 104: 3688–3696

    Article  CAS  Google Scholar 

  56. Henry MD et al. (2004) A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 64: 7995–8001

    Article  CAS  Google Scholar 

  57. Helft PR et al. (2004) A phase I study of cantuzumab mertansine administered as a single intravenous infusion once weekly in patients with advanced solid tumors. Clin Cancer Res 10: 4363–4368

    Article  CAS  Google Scholar 

  58. Tassone P et al. (2004) In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 64: 4629–4636

    Article  CAS  Google Scholar 

  59. Ranson M and Sliwkowski MX (2002) Perspectives on anti-HER monoclonal antibodies. Oncology 63 (Suppl 1): 17–24

    Article  CAS  Google Scholar 

  60. Sievers EL et al. (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93: 3678–3684

    CAS  PubMed  Google Scholar 

  61. Nabhan C et al. (2004) Gemtuzumab ozogamicin (MylotargTM) is infrequently associated with sinusoidal obstructive syndrome/veno-occlusive disease. Ann Oncol 15: 1231–1236

    Article  CAS  Google Scholar 

  62. Larson RA et al. (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104: 1442–1452

    Article  CAS  Google Scholar 

  63. Dowell JA et al. (2001) Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol 41: 1206–1214

    Article  CAS  Google Scholar 

  64. Sievers EL et al. (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19: 3244–3254

    Article  CAS  Google Scholar 

  65. Korth-Bradley JM et al. (2001) Impact of age and gender on the pharmacokinetics of gemtuzumab ozogamicin. Pharmacotherapy 21: 1175–1180

    Article  CAS  Google Scholar 

  66. van Der Velden VH et al. (2001) Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97: 3197–3204

    Article  CAS  Google Scholar 

  67. Walter RB et al. (2005) Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 105: 1295–1302

    Article  CAS  Google Scholar 

  68. Jedema I et al. (2004) Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 18: 316–325

    Article  CAS  Google Scholar 

  69. Linenberger ML et al. (2001) Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 98: 988–994

    Article  CAS  Google Scholar 

  70. Sievers EL (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukaemia in first relapse. Exp Opin Biol Ther 1: 893–901

    Article  CAS  Google Scholar 

  71. Bross PF et al. (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7: 1490–1496

    CAS  PubMed  Google Scholar 

  72. Wadleigh M et al. (2003) Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 102: 1578–1582

    Article  CAS  Google Scholar 

  73. Arceci RJ et al. (2005) Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood 106: 1183–1188

    Article  CAS  Google Scholar 

  74. Buckwalter M et al. (2004) Pharmacokinetics of gemtuzumab ozogamicin as a single-agent treatment of pediatric patients with refractory or relapsed acute myeloid leukemia. J Clin Pharmacol 44: 873–880

    Article  CAS  Google Scholar 

  75. Leopold LH et al. (2003) Comparative efficacy and safety of gemtuzumab ozogamicin monotherapy and high-dose cytarabine combination therapy in patients with acute myeloid leukemia in first relapse. Clin Adv Hematol Oncol 1: 220–225

    PubMed  Google Scholar 

  76. Piccaluga PP et al. (2004) First experience with gemtuzumab ozogamicin plus cytarabine as continuous infusion for elderly acute myeloid leukaemia patients. Leukemia Res 28: 987–990

    Article  CAS  Google Scholar 

  77. Kell WJ et al. (2003) A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 102: 4277–4283

    Article  CAS  Google Scholar 

  78. Swords R et al. (2004) Successful induction of molecular remission with single-agent anti-CD33 antibody (gemtuzumab ozogamicin) in chemotherapy-refractory relapse of acute myeloid leukaemia post-BMT. Eur J Haematol 73: 450–451

    Article  CAS  Google Scholar 

  79. Lutz R et al. (2005) HuC242-DM4, an antibody maytansinoid conjugate with superior preclinical activity in human CanAg -positive tumor xenografts in SCID mice. Proc Am Assoc Cancer Res A1429

  80. Ojima I et al. (2002) Tumor-specific novel taxoid-monoclonal antibody conjugates. J Med Chem 45: 5620–5623

    Article  CAS  Google Scholar 

  81. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1: 118–12955

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Susan J Knox et al., Clinical Cancer Research and IDEC Pharmaceuticals Corporation for the provision and permission to use Figure 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W Tolcher.

Ethics declarations

Competing interests

The authors declared that they have no competing financial interests. AD Ricart and AW Tolcher are investigators in clinical trials with immunoconjugates and Dr. Tolcher has acted as a consultant role to Biogen IDEC, and Genentech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricart, A., Tolcher, A. Technology Insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Rev Clin Oncol 4, 245–255 (2007). https://doi.org/10.1038/ncponc0774

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing