Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical development of antibody–drug conjugates — lessons from leukaemia

Abstract

Advances in our understanding of cancer biology have enabled drug development to progress towards better targeted therapies that are both more effective and safer owing to their lack of off-target toxicities. In this regard, antibody–drug conjugates (ADCs), which have the potential to combine the selectivity of therapeutic antibodies with the cytotoxicity of highly toxic small molecules, are a rapidly developing drug class. The complex and unique structure of an ADC, composed of a monoclonal antibody conjugated to a potent cytotoxic payload via a chemical linker, is designed to selectively target a specific tumour antigen. The success of an ADC is highly dependent on the specific properties of its components, all of which have implications for the stability, cytotoxicity, pharmacokinetics and antitumour activity of the ADC. The development of therapeutic ADCs, including gemtuzumab ozogamicin and inotuzumab ozogamicin, provided great knowledge of the refinements needed for the optimization of such agents. In this Review, we describe the key components of ADC structure and function and focus on the clinical development and subsequent utilization of two leukaemia-directed ADCs — gemtuzumab ozogamicin and inotuzumab ozogamicin — as well as on the mechanisms of resistance and predictors of response to these two agents.

Key points

  • The development of antibody–drug conjugates (ADCs) has enabled the targeted delivery of potent cytotoxins to cancer cells while also limiting the extent of off-target effects.

  • The structural components of ADCs include a monoclonal antibody, a linker and a payload, all of which affect the antitumour activity, toxicity and pharmacokinetics to varying degrees.

  • Gemtuzumab ozogamicin, for patients with acute myeloid leukaemia, was the first ADC to be approved and has paved the way for the emergence of several novel ADCs in both haematological malignancies and solid tumours.

  • Inotuzumab ozogamicin has significantly improved the outcomes of patients with acute lymphoid leukaemia both as a single agent and when administered in combination with HCVD, in patients with acute lymphoid leukaemia compared with cytotoxic chemotherapy alone

  • Expression of drug efflux pumps and/or single nucleotide polymorphisms can reduce the efficacy of ADCs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antibody–drug conjugate constructs.
Fig. 2: Mechanism of action of antibody–drug conjugates.

Similar content being viewed by others

References

  1. Ehrlich, P. Address in Pathology, on Chemotherapy: delivered before the Seventeenth International Congress of Medicine. Br. Med. J. 2, 353–359 (1913).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Gaetano, N. et al. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 171, 1581–1587 (2003).

    PubMed  Google Scholar 

  3. Taylor, R. P. & Lindorfer, M. A. The role of complement in mAb-based therapies of cancer. Methods 65, 18–27 (2014).

    CAS  PubMed  Google Scholar 

  4. Mathe, G., Tran Ba, L. O. & Bernard, J. Effect on mouse leukemia 1210 of a combination by diazo-reaction of amethopterin and gamma-globulins from hamsters inoculated with such leukemia by heterografts. C. R. Hebd. Seances Acad. Sci. 246, 1626–1628 (1958).

    CAS  PubMed  Google Scholar 

  5. Ghose, T., Cerini, M., Carter, M. & Nairn, R. C. Immunoradioactive agent against cancer. Br. Med. J. 1, 90–93 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghose, T. & Nigam, S. P. Antibody as carrier of chlorambucil. Cancer 29, 1398–1400 (1972).

    CAS  PubMed  Google Scholar 

  7. Rowland, G. F., O’Neill, G. J. & Davies, D. A. Suppression of tumour growth in mice by a drug-antibody conjugate using a novel approach to linkage. Nature 255, 487–488 (1975).

    CAS  PubMed  Google Scholar 

  8. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    CAS  PubMed  Google Scholar 

  9. Ford, C. H. et al. Localisation and toxicity study of a vindesine-anti-CEA conjugate in patients with advanced cancer. Br. J. Cancer 47, 35–42 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nabhan, C. & Tallman, M. S. Early phase I/II trials with gemtuzumab ozogamicin (Mylotarg) in acute myeloid leukemia. Clin. Lymphoma 2 (Suppl. 1), S19–S23 (2002).

    PubMed  Google Scholar 

  11. Nabhan, C. et al. Phase II pilot trial of gemtuzumab ozogamicin (GO) as first line therapy in acute myeloid leukemia patients age 65 or older. Leuk. Res. 29, 53–57 (2005).

    CAS  PubMed  Google Scholar 

  12. Petersdorf, S. H. et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood 121, 4854–4860 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ravandi, F. et al. Gemtuzumab ozogamicin: time to resurrect? J. Clin. Oncol. 30, 3921–3923 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sievers, E. L. et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol. 19, 3244–3254 (2001).

    CAS  PubMed  Google Scholar 

  15. Giles, F. J. et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 92, 406–413 (2001).

    CAS  PubMed  Google Scholar 

  16. Castaigne, S. et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 379, 1508–1516 (2012).

    CAS  PubMed  Google Scholar 

  17. Burnett, A. K. et al. The addition of gemtuzumab ozogamicin to intensive chemotherapy in older patients with AML produces a significant improvement in overall survival: results of the UK NCRI AML16 randomized trial. Blood 118, 582–582 (2011).

    Google Scholar 

  18. Burnett, A. K. et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J. Clin. Oncol. 29, 369–377 (2011).

    CAS  PubMed  Google Scholar 

  19. Saunders, K. O. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front. Immunol. 10, 1296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pyzik, M. et al. The neonatal Fc receptor (FcRn): a misnomer? Front. Immunol. 10, 1540 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mackness, B. C. et al. Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. mAbs 11, 1276–1288 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ritchie, M., Tchistiakova, L. & Scott, N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. mAbs 5, 13–21 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Polson, A. G., Ho, W. Y. & Ramakrishnan, V. Investigational antibody-drug conjugates for hematological malignancies. Expert Opin. Investig. Drugs 20, 75–85 (2011).

    CAS  PubMed  Google Scholar 

  24. Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004).

    CAS  PubMed  Google Scholar 

  25. Lucas, A. T. et al. Factors affecting the pharmacology of antibody-drug conjugates. Antibodies 7, 10 (2018).

    PubMed Central  Google Scholar 

  26. Sun, X. et al. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug. Chem. 28, 1371–1381 (2017).

    CAS  PubMed  Google Scholar 

  27. King, H. D. et al. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J. Med. Chem. 45, 4336–4343 (2002).

    CAS  PubMed  Google Scholar 

  28. Mehrling, T. & Soltis, D. Challenges in optimising the successful construction of antibody drug conjugates in cancer therapy. Antibodies 7, 11 (2018).

    PubMed Central  Google Scholar 

  29. Harding, F. A., Stickler, M. M., Razo, J. & DuBridge, R. B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. mAbs 2, 256–265 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Hwang, W. Y. & Foote, J. Immunogenicity of engineered antibodies. Methods 36, 3–10 (2005).

    CAS  PubMed  Google Scholar 

  31. Rosenberg, A. S. Immunogenicity of biological therapeutics: a hierarchy of concerns. Dev. Biol. 112, 15–21 (2003).

    CAS  Google Scholar 

  32. Ducry, L. & Stump, B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 21, 5–13 (2010).

    CAS  PubMed  Google Scholar 

  33. Satomaa, T. et al. Hydrophilic auristatin glycoside payload enables improved antibody-drug conjugate efficacy and biocompatibility. Antibodies 7, 15 (2018).

    CAS  PubMed Central  Google Scholar 

  34. Dhakal, D., Yogesh, D. & Sohng, J. K. Book Review: Antibody–drug conjugates: fundametnals, drug development, and clinical outcomes to target cancer. Front. Pharmacol. 8, 771 (2017).

    PubMed Central  Google Scholar 

  35. Doronina, S. O. et al. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem. 17, 114–124 (2006).

    CAS  PubMed  Google Scholar 

  36. Lu, J., Jiang, F., Lu, A. & Zhang, G. Linkers having a crucial role in antibody-drug conjugates. Int. J. Mol. Sci. 17, 561 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Teicher, B. A. & Chari, R. V. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res. 17, 6389–6397 (2011).

    CAS  PubMed  Google Scholar 

  38. Li, F. et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 76, 2710–2719 (2016).

    CAS  PubMed  Google Scholar 

  39. Byun, J. H. & Jung, I. H. Modeling to capture bystander-killing effect by released payload in target positive tumor cells. BMC Cancer 19, 194 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Barok, M., Joensuu, H. & Isola, J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 16, 209 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Yardley, D. A. et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer previously treated with chemotherapy and 2 or more HER2-targeted agents: results from the T-PAS expanded access study. Cancer J. 21, 357–364 (2015).

    CAS  PubMed  Google Scholar 

  42. Zein, N., Sinha, A. M., McGahren, W. J. & Ellestad, G. A. Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240, 1198–1201 (1988).

    CAS  PubMed  Google Scholar 

  43. Smellie, M., Kelland, L. R., Thurston, D. E., Souhami, R. L. & Hartley, J. A. Cellular pharmacology of novel C8-linked anthramycin-based sequence-selective DNA minor groove cross-linking agents. Br. J. Cancer 70, 48–53 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jenkins, T. C., Hurley, L. H., Neidle, S. & Thurston, D. E. Structure of a covalent DNA minor groove adduct with a pyrrolobenzodiazepine dimer: evidence for sequence-specific interstrand cross-linking. J. Med. Chem. 37, 4529–4537 (1994).

    CAS  PubMed  Google Scholar 

  45. Hurley, L. H. et al. Pyrrolo[1,4]benzodiazepine antitumor antibiotics: relationship of DNA alkylation and sequence specificity to the biological activity of natural and synthetic compounds. Chem. Res. Toxicol. 1, 258–268 (1988).

    CAS  PubMed  Google Scholar 

  46. Pemmaraju, N. et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N. Engl. J. Med. 380, 1628–1637 (2019).

    CAS  PubMed  Google Scholar 

  47. Schnell, R. et al. A Phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin’s and non-Hodgkin’s lymphoma. Clin. Cancer Res. 8, 1779–1786 (2002).

    CAS  PubMed  Google Scholar 

  48. Madhumathi, J., Devilakshmi, S., Sridevi, S. & Verma, R. S. Immunotoxin therapy for hematologic malignancies: where are we heading? Drug Discov. Today 21, 325–332 (2016).

    CAS  PubMed  Google Scholar 

  49. Akbari, B. et al. Immunotoxins in cancer therapy: Review and update. Int. Rev. Immunol. 36, 207–219 (2017).

    CAS  PubMed  Google Scholar 

  50. van Der Velden, V. H. et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97, 3197–3204 (2001).

    Google Scholar 

  51. Bross, P. F. et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 7, 1490–1496 (2001).

    CAS  PubMed  Google Scholar 

  52. Sievers, E. L. et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93, 3678–3684 (1999).

    CAS  PubMed  Google Scholar 

  53. Hibma, J. & Knight, B. Population pharmacokinetic modeling of gemtuzumab ozogamicin in adult patients with acute myeloid leukemia. Clin. Pharmacokinet. 58, 335–347 (2019).

    CAS  PubMed  Google Scholar 

  54. Food and Drug Administration. ODAC Briefing Document BLA 761060 from the Oncologic Drugs Advisory Committee Meeting on July 11/2017 regarding Mylotarg (gemtuzumab ozogamicin). FDA, https://www.fda.gov/media/106500/download (2017).

  55. Larson, R. A. et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104, 1442–1452 (2005).

    CAS  PubMed  Google Scholar 

  56. Lowenberg, B. et al. High-dose daunorubicin in older patients with acute myeloid leukemia. N. Engl. J. Med. 361, 1235–1248 (2009).

    PubMed  Google Scholar 

  57. Luskin, M. R. et al. Benefit of high-dose daunorubicin in AML induction extends across cytogenetic and molecular groups. Blood 127, 1551–1558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Burnett, A. K. et al. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood 125, 3878–3885 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lambert, J. et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 104, 113–119 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Burnett, A. K. et al. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia. J. Clin. Oncol. 30, 3924–3931 (2012).

    CAS  PubMed  Google Scholar 

  61. Hills, R. K. et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 15, 986–996 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gamis, A. S. et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J. Clin. Oncol. 32, 3021–3032 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Estey, E. H. et al. Experience with gemtuzumab ozogamycin (“mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 99, 4222–4224 (2002).

    CAS  PubMed  Google Scholar 

  64. Lo-Coco, F. et al. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 104, 1995–1999 (2004).

    CAS  PubMed  Google Scholar 

  65. Breccia, M. et al. Sustained molecular remission after low dose gemtuzumab-ozogamicin in elderly patients with advanced acute promyelocytic leukemia. Haematologica 92, 1273–1274 (2007).

    CAS  PubMed  Google Scholar 

  66. Takeshita, A. et al. Efficacy of gemtuzumab ozogamicin on ATRA- and arsenic-resistant acute promyelocytic leukemia (APL) cells. Leukemia 19, 1306–1311 (2005).

    CAS  PubMed  Google Scholar 

  67. Abaza, Y. et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 129, 1275–1283 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lancet, J. E. et al. A phase 2 study of ATRA, arsenic trioxide, and gemtuzumab ozogamicin in patients with high-risk APL (SWOG 0535). Blood Adv. 4, 1683–1689 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. National Comprehensive Cancer Network. Acute myeloid leukemia. NCCN, https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf (2020).

  70. Borthakur, G. M. et al. Fludarabine, cytarabine, G-CSF and gemtuzumab ozogamicin (FLAG-GO) regimen results in better molecular response and relapse-free survival in core binding factor acute myeloid leukemia than FLAG and idarubicin (FLAG-Ida). Blood 134, 290–290 (2019).

    Google Scholar 

  71. Lambert, J. et al. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Oncotarget 5, 6280–6288 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Kapp-Schwoerer, S. et al. Impact of gemtuzumab ozogamicin on MRD and relapse risk in NPM1 mutated AML patients: results from the AMLSG 09-09 Trial. Blood 136, 3041–3050 (2020).

    CAS  PubMed  Google Scholar 

  73. Olejniczak, S. H., Stewart, C. C., Donohue, K. & Czuczman, M. S. A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol. Invest. 35, 93–114 (2006).

    CAS  PubMed  Google Scholar 

  74. DiJoseph, J. F. et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol. Immunother. 54, 11–24 (2005).

    CAS  PubMed  Google Scholar 

  75. DiJoseph, J. F. et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103, 1807–1814 (2004).

    CAS  PubMed  Google Scholar 

  76. Advani, A. et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J. Clin. Oncol. 28, 2085–2093 (2010).

    CAS  PubMed  Google Scholar 

  77. Ogura, M. et al. Phase I study of inotuzumab ozogamicin (CMC-544) in Japanese patients with follicular lymphoma pretreated with rituximab-based therapy. Cancer Sci. 101, 1840–1845 (2010).

    CAS  PubMed  Google Scholar 

  78. Goy, A. et al. A phase 2 study of inotuzumab ozogamicin in patients with indolent B-cell non-Hodgkin lymphoma refractory to rituximab alone, rituximab and chemotherapy, or radioimmunotherapy. Br. J. Haematol. 174, 571–581 (2016).

    CAS  PubMed  Google Scholar 

  79. Fayad, L. et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J. Clin. Oncol. 31, 573–583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dijoseph, J. F., Dougher, M. M., Armellino, D. C., Evans, D. Y. & Damle, N. K. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 21, 2240–2245 (2007).

    CAS  PubMed  Google Scholar 

  81. Betts, A. M. et al. Preclinical to clinical translation of antibody-drug conjugates using PK/PD modeling: a retrospective analysis of inotuzumab ozogamicin. AAPS J. 18, 1101–1116 (2016).

    CAS  PubMed  Google Scholar 

  82. DeAngelo, D. J. et al. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv. 1, 1167–1180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kantarjian, H. et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 13, 403–411 (2012).

    CAS  PubMed  Google Scholar 

  84. Kantarjian, H. et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer 119, 2728–2736 (2013).

    CAS  PubMed  Google Scholar 

  85. Kantarjian, H. M. et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 375, 740–753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jabbour, E. et al. Impact of salvage treatment phase on inotuzumab ozogamicin treatment for relapsed/refractory acute lymphoblastic leukemia: an update from the INO-VATE final study database. Leuk. Lymphoma 61, 2012–2015 (2020).

    CAS  PubMed  Google Scholar 

  87. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 125, 2474–2487 (2019).

    CAS  Google Scholar 

  88. Jabbour, E. et al. Impact of minimal residual disease status in patients with relapsed/refractory acute lymphoblastic leukemia treated with inotuzumab ozogamicin in the phase III INO-VATE trial. Leuk. Res. 88, 106283 (2020).

    CAS  PubMed  Google Scholar 

  89. Marks, D. I. et al. Outcomes of allogeneic stem cell transplantation after inotuzumab ozogamicin treatment for relapsed or refractory acute lymphoblastic leukemia. Biol. Blood Marrow Transpl. 25, 1720–1729 (2019).

    CAS  Google Scholar 

  90. Jabbour, E. et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol. 4, 230–234 (2018).

    PubMed  Google Scholar 

  91. Jabbour, E. et al. Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome-negative acute lymphoblastic leukemia in first salvage. Cancer 124, 4044–4055 (2018).

    CAS  PubMed  Google Scholar 

  92. Jabbour, E. J. et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: A propensity score analysis. Cancer 125, 2579–2586 (2019).

    CAS  PubMed  Google Scholar 

  93. Jain, N. et al. Inotuzumab ozogamicin with bosutinib in relapsed or refractory philadelphia chromosome-positive (PH+) acute lymphoblastic leukemia (ALL) or chronic myeloid leukemia in lymphoid blast phase (CML-LBP) [Abstract EP396]. Presented at European Hematology Association (EHA) held in Frankfurt, Germany, on 12 June 2020, https://library.ehaweb.org/eha/2020/eha25th/294315/nitin.jain.inotuzumab.ozogamicin.with.bosutinib.in.relapsed.or.refractory.html (2020).

  94. Guffroy, M. et al. Liver microvascular injury and thrombocytopenia of antibody-calicheamicin conjugates in cynomolgus monkeys-mechanism and monitoring. Clin. Cancer Res. 23, 1760–1770 (2017).

    CAS  PubMed  Google Scholar 

  95. Ho, V. T. et al. Prior gemtuzumab ozogamicin exposure in adults with acute myeloid leukemia does not increase hepatic veno-occlusive disease risk after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research analysis. Biol. Blood Marrow Transpl. 26, 884–892 (2020).

    CAS  Google Scholar 

  96. Stock, W. et al. Efficacy of inotuzumab ozogamicin in patients with Philadelphia chromosome-positive relapsed/refractory acute lymphoblastic leukemia. Cancer https://doi.org/10.1002/cncr.33321 (2020).

    Article  PubMed  Google Scholar 

  97. Taksin, A. L. et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia: a prospective study of the alfa group. Leukemia 21, 66–71 (2007).

    CAS  PubMed  Google Scholar 

  98. Richardson, P. G. et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 127, 1656–1665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Richardson, P. G. et al. Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol. Blood Marrow Transpl. 16, 1005–1017 (2010).

    CAS  Google Scholar 

  100. Gloude, N. J. et al. Combination of high-dose methylprednisolone and defibrotide for veno-occlusive disease in pediatric hematopoietic stem cell transplant recipients. Biol. Blood Marrow Transpl. 24, 91–95 (2018).

    CAS  Google Scholar 

  101. Myers, K. C., Lawrence, J., Marsh, R. A., Davies, S. M. & Jodele, S. High-dose methylprednisolone for veno-occlusive disease of the liver in pediatric hematopoietic stem cell transplantation recipients. Biol. Blood Marrow Transpl. 19, 500–503 (2013).

    CAS  Google Scholar 

  102. Ng, S. W. K. et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540, 433–437 (2016).

    CAS  PubMed  Google Scholar 

  103. Ng, S. W. K. et al. A novel predictor of response to gemtuzumab ozogamicin therapy in AML provides strategies for sensitization of leukemia stem cells in individual patients. Blood 132, 2765–2765 (2018).

    Google Scholar 

  104. Pollard, J. A. et al. CD33 expression and its association with gemtuzumab ozogamicin response: results from the randomized phase III children’s oncology group trial AAML0531. J. Clin. Oncol. 34, 747–755 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Olombel, G. et al. The level of blast CD33 expression positively impacts the effect of gemtuzumab ozogamicin in patients with acute myeloid leukemia. Blood 127, 2157–2160 (2016).

    CAS  PubMed  Google Scholar 

  106. Khan, N. et al. Expression of CD33 is a predictive factor for effect of gemtuzumab ozogamicin at different doses in adult acute myeloid leukaemia. Leukemia 31, 1059–1068 (2017).

    CAS  PubMed  Google Scholar 

  107. Lamba, J. K. et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in De novo acute myeloid leukemia: report from randomized phase III children’s oncology group Trial AAML0531. J. Clin. Oncol. 35, 2674–2682 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gale, R. E. et al. No evidence that CD33 splicing SNP impacts the response to GO in younger adults with AML treated on UK MRC/NCRI trials. Blood 131, 468–471 (2018).

    CAS  PubMed  Google Scholar 

  109. Jabbour, E. et al. Prognostic factors for outcome in patients with refractory and relapsed acute lymphocytic leukemia treated with inotuzumab ozogamicin, a CD22 monoclonal antibody. Am. J. Hematol. 90, 193–196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jabbour, E. et al. Prognostic implications of cytogenetics in adults with acute lymphoblastic leukemia treated with inotuzumab ozogamicin. Am. J. Hematol. 94, 408–416 (2019).

    CAS  PubMed  Google Scholar 

  111. Kantarjian, H. M. et al. Efficacy and safety outcomes in the phase 3 INO-vate trial by baseline CD22 positivity assessed by local laboratories. Blood 134, 1344–1344 (2019).

    Google Scholar 

  112. Kebriaei, P. et al. Exploration of potential relationships between CD22 and selected Safety outcomes in the inotuzumab ozogamicin phase 3 INO-VATE study. Blood 132, 4031–4031 (2018).

    Google Scholar 

  113. Shah, N. N. et al. Evaluation of CD22 modulation as a mechanism of resistance to inotuzumab ozogamicin (InO): results from central CD22 testing on the Children’s Oncology Group (COG) phase II trial of INO in children and young adults with CD22+ B-acute lymphoblastic leukemia (B-ALL). J. Clin. Oncol. 38, 10519–10519 (2020).

    Google Scholar 

  114. Garcia-Alonso, S., Ocana, A. & Pandiella, A. Resistance to antibody-drug conjugates. Cancer Res. 78, 2159–2165 (2018).

    CAS  PubMed  Google Scholar 

  115. Cianfriglia, M., Mallano, A., Ascione, A. & Dupuis, M. L. Multidrug transporter proteins and cellular factors involved in free and mAb linked calicheamicin-gamma1 (gentuzumab ozogamicin, GO) resistance and in the selection of GO resistant variants of the HL60 AML cell line. Int. J. Oncol. 36, 1513–1520 (2010).

    CAS  PubMed  Google Scholar 

  116. Walter, R. B. et al. Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 102, 1466–1473 (2003).

    CAS  PubMed  Google Scholar 

  117. Matsui, H. et al. Reduced effect of gemtuzumab ozogamicin (CMA-676) on P-glycoprotein and/or CD34-positive leukemia cells and its restoration by multidrug resistance modifiers. Leukemia 16, 813–819 (2002).

    CAS  PubMed  Google Scholar 

  118. Takeshita, A. et al. CMC-544 (inotuzumab ozogamicin) shows less effect on multidrug resistant cells: analyses in cell lines and cells from patients with B-cell chronic lymphocytic leukaemia and lymphoma. Br. J. Haematol. 146, 34–43 (2009).

    CAS  PubMed  Google Scholar 

  119. Amin, M. L. P-glycoprotein inhibition for optimal drug delivery. Drug Target. Insights 7, 27–34 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Rafiee, R. et al. ABCB1 SNP predicts outcome in patients with acute myeloid leukemia treated with Gemtuzumab ozogamicin: a report from Children’s Oncology Group AAML0531 Trial. Blood Cancer J. 9, 51 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Stein, E. M. et al. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood 131, 387–396 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Fathi, A. T. et al. A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML. Blood 132, 1125–1133 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kovtun, Y. et al. IMGN779, a novel CD33-targeting antibody-drug conjugate with DNA-alkylating activity, exhibits potent antitumor activity in models of AML. Mol. Cancer Ther. 17, 1271–1279 (2018).

    CAS  PubMed  Google Scholar 

  124. Cortes, J. E. et al. Maturing clinical profile of IMGN779, a next-generation CD33-targeting antibody-drug conjugate, in patients with relapsed or refractory acute myeloid leukemia. Blood 132, 26–26 (2018).

    Google Scholar 

  125. Narayan, R. et al. A phase 1 study of the antibody-drug conjugate brentuximab vedotin with re-induction chemotherapy in patients with CD30-expressing relapsed/refractory acute myeloid leukemia. Cancer 126, 1264–1273 (2020).

    CAS  PubMed  Google Scholar 

  126. Daver, N. G. et al. Clinical profile of IMGN632, a novel CD123-targeting antibody-drug conjugate (ADC), in patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) or blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood 134, 734–734 (2019).

    Google Scholar 

  127. Daver, N. G. et al. A phase 1b/2 study of the CD123-targeting antibody-drug conjugate IMGN632 As Monotherapy or in combination with venetoclax and/or azacitidine for patients with CD123-positive acute myeloid leukemia. Blood 134, 2601–2601 (2019).

    Google Scholar 

  128. Rudra-Ganguly, N., Lowe, C., Challita-Eid, P. M., Mattie, M. in AACR 574 (Springer, 2016).

  129. Snyder, J. T. et al. Metabolism of an oxime-linked antibody drug conjugate, AGS62P1, and characterization of its identified metabolite. Mol. Pharm. 15, 2384–2390 (2018).

    CAS  PubMed  Google Scholar 

  130. Amadori, S. et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J. Clin. Oncol. 34, 972–979 (2016).

    PubMed  Google Scholar 

  131. Delaunay, J. et al. Addition of gemtuzumab ozogamycin to chemotherapy improves event-free survival but not overall survival of aml patients with intermediate cytogenetics not eligible for allogeneic transplantation. results of the GOELAMS AML 2006 IR study. Blood 118, 79–79 (2011).

    Google Scholar 

  132. Amadori, S. et al. Sequential combination of gemtuzumab ozogamicin and standard chemotherapy in older patients with newly diagnosed acute myeloid leukemia: results of a randomized phase III trial by the EORTC and GIMEMA consortium (AML-17). J. Clin. Oncol. 31, 4424–4430 (2013).

    CAS  PubMed  Google Scholar 

  133. Burnett, A. et al. Defining the dose of gemtuzumab ozogamicin in combination with induction chemotherapy in acute myeloid leukemia: a comparison of 3 mg/m2 with 6 mg/m2 in the NCRI AML17 trial. Haematologica 101, 724–731 (2016).

  134. Schlenk, R. F. et al. Gemtuzumab ozogamicin in NPM1-mutated acute myeloid leukemia: early results from the prospective randomized AMLSG 09-09 Phase III study. J. Clin. Oncol. 38, 623–632 (2020).

    CAS  PubMed  Google Scholar 

  135. Advani, A. S. et al. A phase II study of weekly inotuzumab ozogamicin (InO) in adult patients with CD22-positive acute lymphoblastic leukemia (ALL) in second or later salvage. Blood 124, 2255–2255 (2014).

    Google Scholar 

  136. O’Brien, M. M. et al. A phase 2 trial of inotuzumab ozogamicin (InO) in children and young adults with relapsed or refractory (R/R) CD22+ B-acute lymphoblastic leukemia (B-ALL): results from children’s oncology group protocol AALL1621. Blood 134, 741–741 (2019).

    Google Scholar 

  137. Bhojwani, D. et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 33, 884–892 (2019).

    CAS  PubMed  Google Scholar 

  138. Kantarjian, H. et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 19, 240–248 (2018).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Elias Jabbour.

Ethics declarations

Competing interests

E.J. has acted as a consultant for and received research funding from Abbvie, Amgen, Bristol-Myers Squibb, Pfizer and Takeda. H.K. has acted as a consultant for and received research funding from Abbvie, Amgen, Bristol-Myers Squibb, Pfizer and Takeda. S.P. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks A. Takeshita and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbour, E., Paul, S. & Kantarjian, H. The clinical development of antibody–drug conjugates — lessons from leukaemia. Nat Rev Clin Oncol 18, 418–433 (2021). https://doi.org/10.1038/s41571-021-00484-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00484-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing