Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Golgi sorting regulates organization and activity of GPI proteins at apical membranes

Abstract

Here we combined classical biochemistry with new biophysical approaches to study the organization of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) with high spatial and temporal resolution at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, after sorting in the Golgi, each GPI-AP reaches the apical surface in homoclusters. Golgi-derived homoclusters are required for their subsequent plasma membrane organization into cholesterol-dependent heteroclusters. By contrast, in nonpolarized MDCK cells, GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form heteroclusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, in contrast to fibroblasts, in polarized epithelial cells, a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and function of GPI-APs at the apical surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP-FR is in homoclusters at the apical surface of living MDCK cells.
Figure 2: Apical GPI-AP homoclusters and heteroclusters have different sensitivities to cholesterol depletion.
Figure 3: Both homocluster and heterocluster organization are dependent on the polarity status of MDCK cells.
Figure 4: Cholesterol addition is necessary and sufficient to induce homoclusters and heteroclusters of GPI-APs in nonpolarized MDCK cells.
Figure 5: Cholesterol addition promotes homoclustering of GPI-AP in the Golgi and regulates heterocluster formation and GPI-AP activity at the cell surface.
Figure 6: Model of GPI-AP organization and activity in MDCK cells.

Similar content being viewed by others

References

  1. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Goswami, D. et al. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135, 1085–1097 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 1353–1367 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki, K.G. et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat. Chem. Biol. 8, 774–783 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Brameshuber, M. et al. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 41765–41771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harder, T. Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr. Opin. Immunol. 16, 353–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Fivaz, M. et al. Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J. 21, 3989–4000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117, 5955–5964 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Simons, K. & Gerl, M.J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kusumi, A., Suzuki, K.G., Kasai, R.S., Ritchie, K. & Fujiwara, T.K. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem. Sci. 36, 604–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Paladino, S. et al. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167, 699–709 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paladino, S., Sarnataro, D., Tivodar, S. & Zurzolo, C. Oligomerization is a specific requirement for apical sorting of glycosyl-phosphatidylinositol–anchored proteins but not for non–raft-associated apical proteins. Traffic 8, 251–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Hannan, L.A., Lisanti, M.P., Rodriguez-Boulan, E. & Edidin, M. Correctly sorted molecules of a GPI-anchored protein are clustered and immobile when they arrive at the apical surface of MDCK cells. J. Cell Biol. 120, 353–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Friedrichson, T. & Kurzchalia, T.V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Digman, M.A., Dalal, R., Horwitz, A.F. & Gratton, E. Mapping the number of molecules and brightness in the laser scanning microscope. Biophys. J. 94, 2320–2332 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Catino, M.A., Paladino, S., Tivodar, S., Pocard, T. & Zurzolo, C. N- and O-glycans are not directly involved in the oligomerization and apical sorting of GPI proteins. Traffic 9, 2141–2150 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Breuza, L., Garcia, M., Delgrossi, M.H. & Le Bivic, A. Role of the membrane-proximal O-glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells. Exp. Cell Res. 273, 178–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Keller, P. & Simons, K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140, 1357–1367 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ilangumaran, S. & Hoessli, D.C. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335, 433–440 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ridgway, N.D. Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484, 129–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Ohvo-Rekilä, H., Ramstedt, B., Leppimaki, P. & Slotte, J.P. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41, 66–97 (2002).

    Article  PubMed  Google Scholar 

  23. Padilla-Parra, S., Auduge, N., Coppey-Moisan, M. & Tramier, M. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys. J. 95, 2976–2988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padilla-Parra, S. et al. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition. Biophys. J. 97, 2368–2376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paladino, S., Pocard, T., Catino, M.A. & Zurzolo, C. GPI-anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. J. Cell Biol. 172, 1023–1034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paladino, S. et al. Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J. Cell Sci. 121, 4001–4007 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Lebreton, S., Paladino, S. & Zurzolo, C. Selective roles for cholesterol and actin in compartmentalization of different proteins in the Golgi and plasma membrane of polarized cells. J. Biol. Chem. 283, 29545–29553 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Imjeti, N.S. et al. N-glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Mol. Biol. Cell 22, 4621–4634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cunningham, O. et al. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J. 22, 5994–6003 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown, D.A., Crise, B. & Rose, J.K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Lisanti, M.P., Caras, I.W., Davitz, M.A. & Rodriguez-Boulan, E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J. Cell Biol. 109, 2145–2156 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meder, D., Moreno, M.J., Verkade, P., Vaz, W.L. & Simons, K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl. Acad. Sci. USA 103, 329–334 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kenworthy, A.K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ali, M.H. & Imperiali, B. Protein oligomerization: how and why. Bioorg. Med. Chem. 13, 5013–5020 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Sabharanjak, S., Sharma, P., Parton, R.G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kirkham, M. & Parton, R.G. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta 1746, 349–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Johannes, L. & Mayor, S. Induced domain formation in endocytic invagination, lipid sorting, and scission. Cell 142, 507–510 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Datta, A., Bryant, D.M. & Mostov, K.E. Molecular regulation of lumen morphogenesis. Curr. Biol. 21, R126–R136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanos, B. & Rodriguez-Boulan, E. The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 27, 6939–6957 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hellriegel, C., Caiolfa, V.R., Corti, V., Sidenius, N. & Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. FASEB J. 25, 2883–2897 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bridgman, P.C. & Nakajima, Y. Membrane lipid heterogeneity associated with acetylcholine receptor particle aggregates in Xenopus embryonic muscle cells. Proc. Natl. Acad. Sci. USA 78, 1278–1282 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dalal, R.B., Digman, M.A., Horwitz, A.F., Vetri, V. & Gratton, E. Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode. Microsc. Res. Tech. 71, 69–81 (2008).

    Article  PubMed  Google Scholar 

  47. Malengo, G. et al. Fluorescence correlation spectroscopy and photon counting histogram on membrane proteins: functional dynamics of the glycosylphosphatidylinositol-anchored urokinase plasminogen activator receptor. J. Biomed. Opt. 13, 031215 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Seber, G.A.F. Multivariate Observations (J. Wiley & Sons, New York, USA, 1984).

  49. Hillesheim, L.N., Chen, Y. & Muller, J.D. Dual-color photon counting histogram analysis of mRFP1 and EGFP in living cells. Biophys. J. 91, 4273–4284 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tivodar, S. et al. Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells. FEBS Lett. 580, 5705–5712 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Mezghrani, A. et al. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J. 20, 6288–6296 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manders, E.M.M., Verbeek, F.J. & Aten, J.A. Measurement of co-localization of objects in dualcolor confocal images. J. Microsc. 169, 375–382 (1993).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Casanova (Institut Pasteur) for his technical support, N. Auduge (Institut Jacques Monod, ImagoSeine) for his help in FLIM analysis, P. Riccio (University of Naples Federico II) for her help in statistical analysis and the imaging facility at Pasteur Institute (PFID) and at CEINGE Institute (DIM). We thank A. Le Bivic (Institut de Biologie du Développement de Marseille-Luminy (IBDML), Marseille, France), S. Mayor (National Centre for Biological Sciences (NCBS), Bangalore, India) and N. Sidenius (Fondazione Italiana Ricerca sul Cancro Institute of Molecular Oncology (IFOM), Milan, Italy) for cDNA encoding p75-GFP, CHO cells expressing GFP-FR, and cDNAs encoding mGFP-GPI and mGFP-mGFP GPI (uPAR), respectively. This work was supported by the Agence Nationale de la Recherche (ANR) (05-BLAN 296-01 and ANR-09-BLAN-0122) and the European Union FP7 (Priority, grant 222887) to C.Z.; an Associazione Italiana per la Ricerca sul Cancro (AIRC) grant (MFAG 2007-2009) to S.P.; ANR PFTV2007 and Fondation pour la Recherche Médicale (FRM) 'Grands Equipements' to M.C.-M.; and grants NIH-P41 P41-RRO3155 and NIH-P50-GM076516 from the US National Institutes of Health to E.G.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. conceived the project. C.Z., S.P. and S.L. designed experiments. S.P. planned and performed N&B and biochemical experiments, and S.L. planned and performed FLIM experiments. S.T. planned and performed biochemical experiments. E.G. developed the N&B technique, E.G. and G.O. helped with N&B data analysis, and M.T. and M.C.-M. developed the FLIM technique and helped with data analysis. F.F. performed the mathematical analysis of N&B data. S.P., S.L. and C.Z. wrote the manuscript. All authors discussed the results and manuscript text.

Corresponding author

Correspondence to Chiara Zurzolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–9. (PDF 10083 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paladino, S., Lebreton, S., Tivodar, S. et al. Golgi sorting regulates organization and activity of GPI proteins at apical membranes. Nat Chem Biol 10, 350–357 (2014). https://doi.org/10.1038/nchembio.1495

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing