Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia

Abstract

Cilia are microtubule-based organelles that project into the extracellular space, function in the perception and integration of environmental cues1, and regulate Hedgehog signal transduction2. The emergent association of ciliary defects with diverse and pleiotropic human disorders3,4 has fuelled investigations into the molecular genetic regulation of ciliogenesis. Although recent studies implicate planar cell polarity (PCP) in cilia formation, this conclusion is based on analyses of proteins that are not specific to, or downstream effectors of PCP signal transduction5,6,7,8,9,10. Here we characterize zebrafish embryos devoid of all Vangl2 function11, a core and specific component of the PCP signalling pathway. Using Arl13b–GFP as a live marker of the ciliary axoneme, we demonstrate that Vangl2 is not required for ciliogenesis. Instead, Vangl2 controls the posterior tilting of primary motile cilia lining the neurocoel, Kupffer's vesicle and pronephric duct. Furthermore, we show that Vangl2 is required for asymmetric localization of cilia to the posterior apical membrane of neuroepithelial cells. Our results indicate a broad and essential role for PCP in the asymmetric localization and orientation of motile primary cilia, establishing directional fluid flow implicated in normal embryonic development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MZvangl2 mutants show left–right patterning defects, irregular fluid flow and abnormal cilia orientation within Kupffer's vesicle (KV).
Figure 2: Arl13b–GFP expression reveals asymmetric orientation and position of motile primary cilia at the floorplate.
Figure 3: Chimaeric analysis reveals a cell autonomous function for Vangl2 in controlling the posterior tilting of motile floorplate cilia.
Figure 4: MZvangl2 mutants show normal differentiation of multiciliated cells in the pronephric duct, but show defects in the orientation of primary motile cilia.
Figure 5: Analysis of MZknypek mutant embryos reveal similar defects in the asymmetric localization and orientation of primary motile cilia.

Similar content being viewed by others

References

  1. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  Google Scholar 

  2. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    Article  CAS  Google Scholar 

  3. Bisgrove, B. W. & Yost, H. J. The roles of cilia in developmental disorders and disease. Development 133, 4131–4143 (2006).

    Article  CAS  Google Scholar 

  4. Quinlan, R. J., Tobin, J. L. & Beales, P. L. Modeling ciliopathies: primary cilia in development and disease. Curr. Top. Dev. Biol. 84, 249–310 (2008).

    Article  CAS  Google Scholar 

  5. Park, T. J., Haigo, S. L. & Wallingford, J. B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nature Genet. 38, 303–311 (2006).

    Article  CAS  Google Scholar 

  6. Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genet. 40, 871–879 (2008).

    Article  CAS  Google Scholar 

  7. Oishi, I., Kawakami, Y., Raya, A., Callol-Massot, C. & Izpisua Belmonte, J. C. Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nature Genet. 38, 1316–1322 (2006).

    Article  CAS  Google Scholar 

  8. Gray, R. S. et al. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nature Cell Biol. 11, 1225–1232 (2009).

    Article  CAS  Google Scholar 

  9. Heydeck, W., Zeng, H. & Liu, A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev. Dyn. 238, 3035–3042 (2009).

    Article  CAS  Google Scholar 

  10. Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nature Rev. Mol. Cell Biol. 10, 468–477 (2009).

    Article  CAS  Google Scholar 

  11. Ciruna, B., Jenny, A., Lee, D., Mlodzik, M. & Schier, A. F. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439, 220–224 (2006).

    Article  CAS  Google Scholar 

  12. Zallen, J. A. Planar polarity and tissue morphogenesis. Cell 129, 1051–1063 (2007).

    Article  CAS  Google Scholar 

  13. Seifert, J. R. & Mlodzik, M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nature Rev. Genet. 8, 126–138 (2007).

    Article  CAS  Google Scholar 

  14. Simons, M. & Mlodzik, M. Planar cell polarity signaling: from fly development to human disease. Annu. Rev. Genet. 42, 517–540 (2008).

    Article  CAS  Google Scholar 

  15. Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954 (2002).

    Article  CAS  Google Scholar 

  16. Wallingford, J. B., Fraser, S. E. & Harland, R. M. Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev. Cell 2, 695–706 (2002).

    Article  CAS  Google Scholar 

  17. Yin, C., Ciruna, B. & Solnica-Krezel, L. Convergence and extension movements during vertebrate gastrulation Curr. Top. Dev. Biol. 89, 163–192 (2009).

    Article  CAS  Google Scholar 

  18. Rida, P. C. & Chen, P. Line up and listen: Planar cell polarity regulation in the mammalian inner ear. Semin. Cell Dev. Biol. (2009).

  19. Ciruna, B. et al. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc. Natl Acad. Sci. USA 99, 14919–14924 (2002).

    Article  CAS  Google Scholar 

  20. Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. Nodal flow and the generation of left-right asymmetry. Cell 125, 33–45 (2006).

    Article  CAS  Google Scholar 

  21. Bisgrove, B. W., Essner, J. J. & Yost, H. J. Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127, 3567–3579 (2000).

    CAS  PubMed  Google Scholar 

  22. Serluca, F. C. et al. Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning. Development 136, 1621–1631 (2009).

    Article  CAS  Google Scholar 

  23. Kramer-Zucker, A. G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).

    Article  CAS  Google Scholar 

  24. Okada, Y., Takeda, S., Tanaka, Y., Belmonte, J. C. & Hirokawa, N. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121, 633–644 (2005).

    Article  CAS  Google Scholar 

  25. Okabe, N., Xu, B. & Burdine, R. D. Fluid dynamics in zebrafish Kupffer's vesicle. Dev. Dyn. 237, 3602–3612 (2008).

    Article  CAS  Google Scholar 

  26. Caspary, T., Larkins, C. E. & Anderson, K. V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  Google Scholar 

  27. Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004).

    Article  CAS  Google Scholar 

  28. Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L. & Bornens, M. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149, 317–330 (2000).

    Article  CAS  Google Scholar 

  29. Yin, C., Kiskowski, M., Pouille, P. A., Farge, E. & Solnica-Krezel, L. Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J. Cell Biol. 180, 221–232 (2008).

    Article  CAS  Google Scholar 

  30. Geldmacher-Voss, B., Reugels, A. M., Pauls, S. & Campos-Ortega, J. A. A 90-degree rotation of the mitotic spindle changes the orientation of mitoses of zebrafish neuroepithelial cells. Development 130, 3767–3780 (2003).

    Article  CAS  Google Scholar 

  31. Hong, E. & Brewster, R. N-cadherin is required for the polarized cell behaviors that drive neurulation in the zebrafish. Development 133, 3895–3905 (2006).

    Article  CAS  Google Scholar 

  32. Jessen, J. R. & Solnica-Krezel, L. Identification and developmental expression pattern of van gogh-like 1, a second zebrafish strabismus homologue. Gene Expr. Patterns 4, 339–344 (2004).

    Article  CAS  Google Scholar 

  33. Mitchell, B. et al. The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr. Biol. 19, 924–929 (2009).

    Article  CAS  Google Scholar 

  34. Gillingham, A. K. & Munro, S. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol. 23, 579–611 (2007).

    Article  CAS  Google Scholar 

  35. Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001).

    Article  CAS  Google Scholar 

  36. Jessen, J. R. et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nature Cell Biol. 4, 610–615 (2002).

    Article  CAS  Google Scholar 

  37. Suster, M. L., Kikuta, H., Urasaki, A., Asakawa, K. & Kawakami, K. Transgenesis in zebrafish with the tol2 transposon system. Methods Mol. Biol. 561, 41–63 (2009).

    Article  CAS  Google Scholar 

  38. Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).

    Article  CAS  Google Scholar 

  39. Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev. Dyn. 236, 3077–3087 (2007).

    Article  CAS  Google Scholar 

  40. Megason, S. G. & Fraser, S. E. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev. 120, 1407–1420 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tamara Caspary for her gift of the mArl13b cDNA clone; Adrian Salic and Lila Solnica-Krezel for providing the Centrin–GFP expression construct; Sasha Fernando and Angela Morley for zebrafish husbandry; and Danielle Gelinas for expert technical support. This research was undertaken, in part, thanks to funding from the Terry Fox Foundation, the Natural Sciences and Engineering Research Council of Canada, and the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Contributions

S.S. generated MZkny mutants; S.S. and B.C. characterized KV cilia orientation; D.V. and S.S. quantified left–right patterning defects; A.B. and D.V. characterized Arl13b localization in wild-type and MZvangl2 mutants. A.B. performed all further experimentation and analysis; B.C. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Brian Ciruna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 934 kb)

Supplementary Information

Supplementary Movie 1 (MOV 3243 kb)

Supplementary Information

Supplementary Movie 2 (MOV 3195 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2184 kb)

Supplementary Information

Supplementary Movie 4 (MOV 358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovina, A., Superina, S., Voskas, D. et al. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12, 407–412 (2010). https://doi.org/10.1038/ncb2042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2042

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing